9,995 research outputs found

    Schatten-pp Quasi-Norm Regularized Matrix Optimization via Iterative Reweighted Singular Value Minimization

    Full text link
    In this paper we study general Schatten-pp quasi-norm (SPQN) regularized matrix minimization problems. In particular, we first introduce a class of first-order stationary points for them, and show that the first-order stationary points introduced in [11] for an SPQN regularized vectorvector minimization problem are equivalent to those of an SPQN regularized matrixmatrix minimization reformulation. We also show that any local minimizer of the SPQN regularized matrix minimization problems must be a first-order stationary point. Moreover, we derive lower bounds for nonzero singular values of the first-order stationary points and hence also of the local minimizers of the SPQN regularized matrix minimization problems. The iterative reweighted singular value minimization (IRSVM) methods are then proposed to solve these problems, whose subproblems are shown to have a closed-form solution. In contrast to the analogous methods for the SPQN regularized vectorvector minimization problems, the convergence analysis of these methods is significantly more challenging. We develop a novel approach to establishing the convergence of these methods, which makes use of the expression of a specific solution of their subproblems and avoids the intricate issue of finding the explicit expression for the Clarke subdifferential of the objective of their subproblems. In particular, we show that any accumulation point of the sequence generated by the IRSVM methods is a first-order stationary point of the problems. Our computational results demonstrate that the IRSVM methods generally outperform some recently developed state-of-the-art methods in terms of solution quality and/or speed.Comment: This paper has been withdrawn by the author due to major revision and correction

    An Augmented Lagrangian Approach for Sparse Principal Component Analysis

    Full text link
    Principal component analysis (PCA) is a widely used technique for data analysis and dimension reduction with numerous applications in science and engineering. However, the standard PCA suffers from the fact that the principal components (PCs) are usually linear combinations of all the original variables, and it is thus often difficult to interpret the PCs. To alleviate this drawback, various sparse PCA approaches were proposed in literature [15, 6, 17, 28, 8, 25, 18, 7, 16]. Despite success in achieving sparsity, some important properties enjoyed by the standard PCA are lost in these methods such as uncorrelation of PCs and orthogonality of loading vectors. Also, the total explained variance that they attempt to maximize can be too optimistic. In this paper we propose a new formulation for sparse PCA, aiming at finding sparse and nearly uncorrelated PCs with orthogonal loading vectors while explaining as much of the total variance as possible. We also develop a novel augmented Lagrangian method for solving a class of nonsmooth constrained optimization problems, which is well suited for our formulation of sparse PCA. We show that it converges to a feasible point, and moreover under some regularity assumptions, it converges to a stationary point. Additionally, we propose two nonmonotone gradient methods for solving the augmented Lagrangian subproblems, and establish their global and local convergence. Finally, we compare our sparse PCA approach with several existing methods on synthetic, random, and real data, respectively. The computational results demonstrate that the sparse PCs produced by our approach substantially outperform those by other methods in terms of total explained variance, correlation of PCs, and orthogonality of loading vectors.Comment: 42 page
    • …
    corecore