13,737 research outputs found

    Correlation effects in the electronic structure of the Ni-based superconducting KNi2S2

    Get PDF
    The LDA plus Gutzwiller variational method is used to investigate the groundstate physical properties of the newly discovered superconducting KNi2S2. Five Ni-3d Wannier-orbital basis are constructed by the density-functional theory, to combine with local Coulomb interaction to describe the normal state electronic structure of Ni-based superconductor. The band structure and the mass enhanced are studied based on a multiorbital Hubbard model by using Gutzwiller approximation method. Our results indicate that the correlation effects lead to the mass enhancement of KNi2S2. Different from the band structure calculated from the LDA results, there are three energy bands across the Fermi level along the X-Z line due to the existence of the correlation effects, which induces a very complicated Fermi surface along the X-Z line. We have also investigated the variation of the quasi-particle weight factor with the hole or electron doping and found that the mass enhancement character has been maintained with the doping.Comment: 12 pages, 6 figure

    Surveying Capsid Assembly Pathways through Simulation-Based Data Fitting

    Get PDF
    AbstractVirus capsid assembly has attracted considerable interest from the biophysical modeling community as a model system for complicated self-assembly processes. Simulation methods have proven valuable for characterizing the space of possible kinetics and mechanisms of capsid assembly, but they have so far been able to say little about the assembly kinetics or pathways of any specific virus. It is not possible to directly measure the detailed interaction rates needed to parameterize a model, and there is only a limited amount of experimental evidence available to constrain possible pathways, with almost all of it gathered from in vitro studies of purified coat proteins. In prior work, we developed methods to address this problem by using simulation-based data-fitting to learn rate parameters consistent with both structure-based rule sets and experimental light-scattering data on bulk assembly progress in vitro. We have since improved these methods and extended them to fit simulation parameters to one or more experimental light-scattering curves. Here, we apply the improved data-fitting approach to three capsid systems—human papillomavirus (HPV), hepatitis B virus (HBV), and cowpea chlorotic mottle virus (CCMV)—to assess both the range of pathway types the methods can learn and the diversity of assembly strategies in use between these viruses. The resulting fits suggest three different in vitro assembly mechanisms for the three systems, with HPV capsids fitting a model of assembly via a nonnucleation-limited pathway of accumulation of individual capsomers while HBV and CCMV capsids fit similar but subtly different models of nucleation-limited assembly through ensembles of pathways involving trimer-of-dimer intermediates. The results demonstrate the ability of such data fitting to learn very different pathway types and show some of the versatility of pathways that may exist across real viruses

    Alterations of dendritic cell subsets in the peripheral circulation of patients with cervical carcinoma

    Get PDF
    Patients with cervical carcinoma (CC) are frequently immunocompromised. Dendritic cells (DCs) are potent antigen-presenting cells. Using multicolor flow cytometry, the percentages of CD11c+ (DC1) and CD123+ (DC2) subsets, were determined in the peripheral blood of 37 patients with cervical carcinoma (CC), 54 patients with CIN, and 62 healthy individuals. A substantial reduction of circulating dendritic cells and accordingly immunodepression may be associated with increased IL-6 and TGF-β in serum. These findings could give expression to the immunosuppression of circulating dendritic cells in patients with CC and CIN, thus, may indicate novel aspects of cervical carcinoma immune evasion
    • …
    corecore