58,830 research outputs found

    Proximity and anomalous field-effect characteristics in double-wall carbon nanotubes

    Full text link
    Proximity effect on field-effect characteristic (FEC) in double-wall carbon nanotubes (DWCNTs) is investigated. In a semiconductor-metal (S-M) DWCNT, the penetration of electron wavefunctions in the metallic shell to the semiconducting shell turns the original semiconducting tube into a metal with a non-zero local density of states at the Fermi level. By using a two-band tight-binding model on a ladder of two legs, it is demonstrated that anomalous FEC observed in so-called S-M type DWCNTs can be fully understood by the proximity effect of metallic phases.Comment: 4 pages, 4 figure

    Double transverse spin asymmetry in the ppˉp^\uparrow\bar{p}^\uparrow Drell-Yan process from Sivers functions

    Full text link
    We show that the transverse double spin asymmetry (DSA) in the Drell-Yan process contributed only from the Sivers functions can be picked out by the weighting function QTM2(cos(ϕϕS1)cos(ϕϕS2)+3sin(ϕϕS1)sin(ϕϕS2))\frac{Q_T}{M^2}(\cos(\phi-\phi_{S_1})\cos(\phi-\phi_{S_2})+3\sin(\phi-\phi_{S_1})\sin(\phi-\phi_{S_2})). The asymmetry is proportional to the product of two Sivers functions from each hadron f1T(1)×f1T(1)f_{1T}^{\perp(1)}\times f_{1T}^{\perp (1)}. Using two sets of Sivers functions extracted from the semi-inclusive deeply elastic scattering data at HERMES, we estimate this asymmetry in the ppˉp^\uparrow\bar{p}^\uparrow Drell-Yan process which is possible to be performed in HESR at GSI. The prediction of DSA in the Drell-Yan process contributed by the function g_{1T}(x,\Vec k_T^2), which can be extracted by the weighting function QTM2(3cos(ϕϕS1)cos(ϕϕS2)+sin(ϕϕS1)sin(ϕϕS2))\frac{Q_T}{M^2}(3\cos(\phi-\phi_{S_1})\cos(\phi-\phi_{S_2})+\sin(\phi-\phi_{S_1})\sin(\phi-\phi_{S_2})), is also given at GSI.Comment: 6 latex pages, 2 figures, to appear in PR

    cos2ϕ\cos 2 \phi asymmetries in unpolarized semi-inclusive DIS

    Full text link
    We use the Boer-Mulders functions parameterized from unpolarized p+Dp+D Drell-Yan data by the FNAL E866/NuSea Collaboration combined with recently extracted Collins functions to calculate the cos2ϕ\cos 2 \phi asymmetries in unpolarized semi-inclusive deeply inelastic scattering (SIDIS) processes both for ZEUS at Hadron Electron Ring Accelerator (HERA) and Jefferson Lab experiments (JLab), and to compare our results with their data. We also give predictions for the cos2ϕ\cos 2 \phi asymmetries of SIDIS in the kinematical regime of HERMES Collaboration, and the forthcoming JLab experiments. We predict that the cos2ϕ\cos 2 \phi asymmetries of semi-inclusive π\pi^- production are somewhat larger than that of π+\pi^+ production. We suggest to measure these two processes separately, which will provide more detail information on the Boer-Mulders functions as well as on the Collins functions.Comment: 9 latex pages, 18 figures, to appear in PR

    Density oscillations in trapped dipolar condensates

    Full text link
    We investigated the ground state wave function and free expansion of a trapped dipolar condensate. We find that dipolar interaction may induce both biconcave and dumbbell density profiles in, respectively, the pancake- and cigar-shaped traps. On the parameter plane of the interaction strengths, the density oscillation occurs only when the interaction parameters fall into certain isolated areas. The relation between the positions of these areas and the trap geometry is explored. By studying the free expansion of the condensate with density oscillation, we show that the density oscillation is detectable from the time-of-flight image.Comment: 7 pages, 9 figure

    Spectrum and Duration of Delayed MeV-GeV Emission of Gamma-Ray Bursts in Cosmic Background Radiation Fields

    Full text link
    We generally analyze prompt high-energy emission above a few hundreds of GeV due to synchrotron self-Compton scattering in internal shocks. However, such photons cannot be detected because they may collide with cosmic infrared background photons, leading to electron/positron pair production. Inverse-Compton scattering of the resulting electron/positron pairs off cosmic microwave background photons will produce delayed MeV-GeV emission, which may be much stronger than a typical high-energy afterglow in the external shock model. We expand on the Cheng & Cheng model by deriving the emission spectrum and duration in the standard fireball shock model. A typical duration of the emission is ~ 10^3 seconds, and the time-integrated scattered photon spectrum is nu^{-(p+6)/4}, where p is the index of the electron energy distribution behind internal shocks. This is slightly harder than the synchrotron photon spectrum, nu^{-(p+2)/2}. The lower energy property of the scattered photon spectrum is dependent on the spectral energy distribution of the cosmic infrared background radiation. Therefore, future observations on such delayed MeV-GeV emission and the higher-energy spectral cutoff by the Gamma-Ray Large Area Space Telescope (GLAST) would provide a probe of the cosmic infrared background radiation.Comment: 5 pages, accepted for publication in Ap

    Drell-Yan Lepton Angular Distribution at Small Transverse Momentum

    Get PDF
    We investigate the dependence of the Drell-Yan cross section on lepton polar and azimuthal angles, as generated by the lowest-order QCD annihilation and Compton processes. We focus in particular on the azimuthal-angular distributions, which are of the form cos(phi) and cos(2phi). At small transverse momentum q_T of the lepton pair, q_T << Q, with Q the pair mass, these terms are known to be suppressed relative to the phi-independent part of the Drell-Yan cross section by one or two powers of the transverse momentum. Nonetheless, as we show, like the phi-independent part they are subject to large logarithmic corrections, whose precise form however depends on the reference frame chosen. These logarithmic contributions ultimately require resummation to all orders in the strong coupling. We discuss the potential effects of resummation on the various angular terms in the cross section and on the Lam-Tung relation.Comment: 13 pages, 2 figures; reference added, minor other changes, matches version to be published in PR

    Molecular electronics exploiting sharp structure in the electrode density-of-states. Negative differential resistance and Resonant Tunneling in a poled molecular layer on Al/LiF electrodes

    Full text link
    Density-functional calculations are used to clarify the role of an ultrathin LiF layer on Al electrodes used in molecular electronics. The LiF layer creates a sharp density of states (DOS), as in a scanning-tunneling microscope (STM) tip. The sharp DOS, coupled with the DOS of the molecule leads to negative differential resistance (NDR). Electron transfer between oriented molecules occurs via resonant tunneling. The I-V characteristic for a thin-film of tris (8-hydroxyquinoline)- aluminum (AlQ) molecules, oriented using electric-field poling, and sandwiched between two Al/LiF electrodes is in excellent agreement with theory. This molecular device presents a new paradigm for a convenient, robust, inexpensive alternative to STM or mechanical break-junction structures.Comment: 5 pages, 3 figure
    corecore