6,893 research outputs found
Surface and bulk electronic structures of LaOFeAs studied by angle resolved photoemission spectroscopy
The electronic structure of LaOFeAs, a parent compound of iron-arsenic
superconductors, is studied by angleresolved photoemission spectroscopy. By
examining its dependence on photon energy, polarization, sodium dosing and the
counting of Fermi surface volume, both the bulk and the surface contributions
are identified. We find that a bulk band moves toward high binding energies
below structural transition, and shifts smoothly across the spin density wave
transition by about 25 meV. Our data suggest the band reconstruction may play a
crucial role in the spin density wave transition, and the structural transition
is driven by the short range magnetic order. For the surface states, both the
LaO-terminated and FeAs-terminated components are revealed. Certain small band
shifts are verified for the FeAs-terminated surface states in the spin density
wave state, which is a reflection of the bulk electronic structure
reconstruction. Moreover, sharp quasiparticle peaks quickly rise at low
temperatures, indicating of drastic reduction of the scattering rate. A kink
structure in one of the surface band is shown to be possibly related to the
electron-phonon interactions.Comment: 9 pages, 8 figure
A Unified Approach to the Classical Statistical Analysis of Small Signals
We give a classical confidence belt construction which unifies the treatment
of upper confidence limits for null results and two-sided confidence intervals
for non-null results. The unified treatment solves a problem (apparently not
previously recognized) that the choice of upper limit or two-sided intervals
leads to intervals which are not confidence intervals if the choice is based on
the data. We apply the construction to two related problems which have recently
been a battle-ground between classical and Bayesian statistics: Poisson
processes with background, and Gaussian errors with a bounded physical region.
In contrast with the usual classical construction for upper limits, our
construction avoids unphysical confidence intervals. In contrast with some
popular Bayesian intervals, our intervals eliminate conservatism (frequentist
coverage greater than the stated confidence) in the Gaussian case and reduce it
to a level dictated by discreteness in the Poisson case. We generalize the
method in order to apply it to analysis of experiments searching for neutrino
oscillations. We show that this technique both gives correct coverage and is
powerful, while other classical techniques that have been used by neutrino
oscillation search experiments fail one or both of these criteria.Comment: 40 pages, 15 figures. Changes 15-Dec-99 to agree more closely with
published version. A few small changes, plus the two substantive changes we
made in proof back in 1998: 1) The definition of "sensitivity" in Sec. V(C).
It was inconsistent with our actual definition in Sec. VI. 2) "Note added in
proof" at end of the Conclusio
Study of the diffuse gamma-ray emission from the Galactic plane with ARGO-YBJ
The events recorded by ARGO-YBJ in more than five years of data collection
have been analyzed to determine the diffuse gamma-ray emission in the Galactic
plane at Galactic longitudes 25{\deg} < l < 100{\deg} and Galactic latitudes .
The energy range covered by this analysis, from ~350 GeV to ~2 TeV, allows the
connection of the region explored by Fermi with the multi-TeV measurements
carried out by Milagro. Our analysis has been focused on two selected regions
of the Galactic plane, i.e., 40{\deg} < l < 100{\deg} and 65{\deg} < l <
85{\deg} (the Cygnus region), where Milagro observed an excess with respect to
the predictions of current models. Great care has been taken in order to mask
the most intense gamma-ray sources, including the TeV counterpart of the Cygnus
cocoon recently identified by ARGO-YBJ, and to remove residual contributions.
The ARGO-YBJ results do not show any excess at sub-TeV energies corresponding
to the excess found by Milagro, and are consistent with the predictions of the
Fermi model for the diffuse Galactic emission. From the measured energy
distribution we derive spectral indices and the differential flux at 1 TeV of
the diffuse gamma-ray emission in the sky regions investigated.Comment: 11 pages, 6 figures, published in AP
The cosmic ray proton plus helium energy spectrum measured by the ARGO-YBJ experiment in the energy range 3-300 TeV
The ARGO-YBJ experiment is a full-coverage air shower detector located at the
Yangbajing Cosmic Ray Observatory (Tibet, People's Republic of China, 4300 m
a.s.l.). The high altitude, combined with the full-coverage technique, allows
the detection of extensive air showers in a wide energy range and offer the
possibility of measuring the cosmic ray proton plus helium spectrum down to the
TeV region, where direct balloon/space-borne measurements are available. The
detector has been in stable data taking in its full configuration from November
2007 to February 2013. In this paper the measurement of the cosmic ray proton
plus helium energy spectrum is presented in the region 3-300 TeV by analyzing
the full collected data sample. The resulting spectral index is . These results demonstrate the possibility of performing an accurate
measurement of the spectrum of light elements with a ground based air shower
detector.Comment: 18 pages, 8 figures, preprint submitted to Phys. Rev.
EAS age determination from the study of the lateral distribution of charged particles near the shower axis with the ARGO-YBJ experiment
The ARGO-YBJ experiment, a full coverage extensive air shower (EAS) detector
located at high altitude (4300 m a.s.l.) in Tibet, China, has smoothly taken
data, with very high stability, since November 2007 to the beginning of 2013.
The array consisted of a carpet of about 7000 m Resistive Plate Chambers
(RPCs) operated in streamer mode and equipped with both digital and analog
readout, providing the measurement of particle densities up to few particles
per cm. The unique detector features (full coverage, readout granularity,
wide dynamic range, etc) and location (very high altitude) allowed a detailed
study of the lateral density profile of charged particles at ground very close
to the shower axis and its description by a proper lateral distribution
function (LDF). In particular, the information collected in the first 10 m from
the shower axis have been shown to provide a very effective tool for the
determination of the shower development stage ("age") in the energy range 50
TeV - 10 PeV. The sensitivity of the age parameter to the mass composition of
primary Cosmic Rays is also discussed
First Measurement of the Branching Fraction of the Decay psi(2S) --> tau tau
The branching fraction of the psi(2S) decay into tau pair has been measured
for the first time using the BES detector at the Beijing Electron-Positron
Collider. The result is ,
where the first error is statistical and the second is systematic. This value,
along with those for the branching fractions into e+e- and mu+mu of this
resonance, satisfy well the relation predicted by the sequential lepton
hypothesis. Combining all these values with the leptonic width of the resonance
the total width of the psi(2S) is determined to be keV.Comment: 9 pages, 2 figure
Observation of Y(2175) in
The decays of are analyzed using a sample of events collected with the BESII detector at the Beijing
Electron-Positron Collider (BEPC). A structure at around GeV/ with
about significance is observed in the invariant mass
spectrum. A fit with a Breit-Wigner function gives the peak mass and width of
GeV/ and GeV/, respectively, that are consistent with those
of Y(2175), observed by the BABAR collaboration in the initial-state radiation
(ISR) process . The production branching
ratio is determined to be , assuming that the Y(2175) is a state.Comment: 5 pages, 4 figures, accepted by Phys. Rev. Let
4.5 years multi-wavelength observations of Mrk 421 during the ARGO-YBJ and Fermi common operation time
We report on the extensive multi-wavelength observations of the blazar
Markarian 421 (Mrk 421) covering radio to gamma-rays, during the 4.5 year
period of ARGO-YBJ and Fermi common operation time, from August 2008 to
February 2013. In particular, thanks to the ARGO-YBJ and Fermi data, the whole
energy range from 100 MeV to 10 TeV is covered without any gap. In the
observation period, Mrk 421 showed both low and high activity states at all
wavebands. The correlations among flux variations in different wavebands were
analyzed. Seven large flares, including five X-ray flares and two GeV gamma-ray
flares with variable durations (3-58 days), and one X-ray outburst phase were
identified and used to investigate the variation of the spectral energy
distribution with respect to a relative quiescent phase. During the outburst
phase and the seven flaring episodes, the peak energy in X-rays is observed to
increase from sub-keV to few keV. The TeV gamma-ray flux increases up to
0.9-7.2 times the flux of the Crab Nebula. The behavior of GeV gamma-rays is
found to vary depending on the flare, a feature that leads us to classify
flares into three groups according to the GeV flux variation. Finally, the
one-zone synchrotron self-Compton model was adopted to describe the emission
spectra. Two out of three groups can be satisfactorily described using injected
electrons with a power-law spectral index around 2.2, as expected from
relativistic diffuse shock acceleration, whereas the remaining group requires a
harder injected spectrum. The underlying physical mechanisms responsible for
different groups may be related to the acceleration process or to the
environment properties.Comment: 17 pages, 9 figures, 5 tables, Accepted for publication in ApJ
The Knee of the Cosmic Hydrogen and Helium Spectrum below 1 PeV Measured by ARGO-YBJ and a Cherenkov Telescope of LHAASO
The measurement of cosmic ray energy spectra, in particular for individual
species, is an essential approach in finding their origin. Locating the "knees"
of the spectra is an important part of the approach and has yet to be achieved.
Here we report a measurement of the mixed Hydrogen and Helium spectrum using
the combination of the ARGO-YBJ experiment and of a prototype Cherenkov
telescope for the LHAASO experiment. A knee feature at 640+/-87 TeV, with a
clear steepening of the spectrum, is observed. This gives fundamental inputs to
galactic cosmic ray acceleration models
- …