22,187 research outputs found
FEAFA: A Well-Annotated Dataset for Facial Expression Analysis and 3D Facial Animation
Facial expression analysis based on machine learning requires large number of
well-annotated data to reflect different changes in facial motion. Publicly
available datasets truly help to accelerate research in this area by providing
a benchmark resource, but all of these datasets, to the best of our knowledge,
are limited to rough annotations for action units, including only their
absence, presence, or a five-level intensity according to the Facial Action
Coding System. To meet the need for videos labeled in great detail, we present
a well-annotated dataset named FEAFA for Facial Expression Analysis and 3D
Facial Animation. One hundred and twenty-two participants, including children,
young adults and elderly people, were recorded in real-world conditions. In
addition, 99,356 frames were manually labeled using Expression Quantitative
Tool developed by us to quantify 9 symmetrical FACS action units, 10
asymmetrical (unilateral) FACS action units, 2 symmetrical FACS action
descriptors and 2 asymmetrical FACS action descriptors, and each action unit or
action descriptor is well-annotated with a floating point number between 0 and
1. To provide a baseline for use in future research, a benchmark for the
regression of action unit values based on Convolutional Neural Networks are
presented. We also demonstrate the potential of our FEAFA dataset for 3D facial
animation. Almost all state-of-the-art algorithms for facial animation are
achieved based on 3D face reconstruction. We hence propose a novel method that
drives virtual characters only based on action unit value regression of the 2D
video frames of source actors.Comment: 9 pages, 7 figure
- …