125,400 research outputs found

    Evolution of the CKM Matrix in the Universal Extra Dimension Model

    Full text link
    The evolution of the Cabibbo-Kobayashi-Maskawa matrix and the quark Yukawa couplings is performed for the one-loop renormalization group equations in the universal extra dimension model. It is found that the evolution of mixing angles and the CP violation measure J may rapidly vary in the presence of the Kaluza-Klein modes, and this variation becomes dramatic as the energy approaches the unification scale.Comment: 10 pages, 4 figure

    Delocalized, non-SUSY pp-branes, tachyon condensation and tachyon matter

    Full text link
    We construct non-supersymmetric pp-brane solutions of type II supergravities in arbitrary dimensions (dd) delocalized in one of the spatial transverse directions. By a Wick rotation we convert these solutions into Euclidean pp-branes delocalized in the transverse time-like direction. The former solutions in d=10d=10 nicely interpolate between the (p+1)(p+1)-dimensional non-BPS D-branes and the pp-dimensional BPS D-branes very similar to the picture of tachyon condensation for the tachyonic kink solution on the non-BPS D-branes. On the other hand the latter solutions interpolate between the (p+1)(p+1)-dimensional non-BPS D-branes and the tachyon matter supergravity configuration very similar to the picture of rolling tachyon on the non-BPS D-branes.Comment: 15 pages, typos correcte

    Gaussian Effective Potential and the Coleman's normal-ordering Prescription : the Functional Integral Formalism

    Get PDF
    For a class of system, the potential of whose Bosonic Hamiltonian has a Fourier representation in the sense of tempered distributions, we calculate the Gaussian effective potential within the framework of functional integral formalism. We show that the Coleman's normal-ordering prescription can be formally generalized to the functional integral formalism.Comment: 6 pages, revtex; With derivation details and an example added. To appear in J. Phys.

    Black Holes in Higher-Derivative Gravity

    Get PDF
    Extensions of Einstein gravity with higher-order derivative terms arise in string theory and other effective theories, as well as being of interest in their own right. In this paper we study static black-hole solutions in the example of Einstein gravity with additional quadratic curvature terms. A Lichnerowicz-type theorem simplifies the analysis by establishing that they must have vanishing Ricci scalar curvature. By numerical methods we then demonstrate the existence of further black-hole solutions over and above the Schwarzschild solution. We discuss some of their thermodynamic properties, and show that they obey the first law of thermodynamics.Comment: Typos corrected, discussion added, figure changed. 4 pages, 6 figure

    Lichnerowicz Modes and Black Hole Families in Ricci Quadratic Gravity

    Full text link
    A new branch of black hole solutions occurs along with the standard Schwarzschild branch in nn-dimensional extensions of general relativity including terms quadratic in the Ricci tensor. The standard and new branches cross at a point determined by a static negative-eigenvalue eigenfunction of the Lichnerowicz operator, analogous to the Gross-Perry-Yaffe eigenfunction for the Schwarzschild solution in standard n=4n=4 dimensional general relativity. This static eigenfunction has two r\^oles: both as a perturbation away from Schwarzschild along the new black-hole branch and also as a threshold unstable mode lying at the edge of a domain of Gregory-Laflamme-type instability of the Schwarzschild solution for small-radius black holes. A thermodynamic analogy with the Gubser and Mitra conjecture on the relation between quantum thermodynamic and classical dynamical instabilities leads to a suggestion that there may be a switch of stability properties between the old and new black-hole branches for small black holes with radii below the branch crossing point.Comment: 33 pages, 8 figure
    corecore