47,515 research outputs found
Deep learning for extracting protein-protein interactions from biomedical literature
State-of-the-art methods for protein-protein interaction (PPI) extraction are
primarily feature-based or kernel-based by leveraging lexical and syntactic
information. But how to incorporate such knowledge in the recent deep learning
methods remains an open question. In this paper, we propose a multichannel
dependency-based convolutional neural network model (McDepCNN). It applies one
channel to the embedding vector of each word in the sentence, and another
channel to the embedding vector of the head of the corresponding word.
Therefore, the model can use richer information obtained from different
channels. Experiments on two public benchmarking datasets, AIMed and BioInfer,
demonstrate that McDepCNN compares favorably to the state-of-the-art
rich-feature and single-kernel based methods. In addition, McDepCNN achieves
24.4% relative improvement in F1-score over the state-of-the-art methods on
cross-corpus evaluation and 12% improvement in F1-score over kernel-based
methods on "difficult" instances. These results suggest that McDepCNN
generalizes more easily over different corpora, and is capable of capturing
long distance features in the sentences.Comment: Accepted for publication in Proceedings of the 2017 Workshop on
Biomedical Natural Language Processing, 10 pages, 2 figures, 6 table
Uniqueness of asymptotic cones of complete noncompact shrinking gradient Ricci solitons with Ricci curvature decay
We discuss an elementary consequence of the works of (1) Brett Kotschwar and
Lu Wang and (2) Ovidiu Munteanu and Jiaping Wang
- …