2,789 research outputs found
A Systematic Electromagnetic-Circuit Method for EMI Analysis of Coupled Interconnects on Dispersive Dielectrics
published_or_final_versio
Impurity state in Haldane gap for S=1 Heisenberg antiferromagnetic chain with bond doping
Using a new impurity density matrix renormalization group scheme, we
establish a reliable picture of how the low lying energy levels of a
Heisenberg antiferromagnetic chain change {\it quantitatively} upon bond
doping. A new impurity state gradually occurs in the Haldane gap as ,
while it appears only if with as . The
system is non-perturbative as . This explains the
appearance of a new state in the Haldane gap in a recent experiment on
YCaBaNiO [J.F. DiTusa, et al., Phys. Rev. Lett. 73 1857(1994)].Comment: 4 pages of uuencoded gzip'd postscrip
Impurity Energy Level Within The Haldane Gap
An impurity bond in a periodic 1D antiferromagnetic, spin 1 chain with
exchange is considered. Using the numerical density matrix renormalization
group method, we find an impurity energy level in the Haldane gap,
corresponding to a bound state near the impurity bond. When the level
changes gradually from the edge of the Haldane gap to the ground state energy
as the deviation changes from 0 to 1. It seems that there is
no threshold. Yet, there is a threshold when . The impurity level
appears only when the deviation is greater than ,
which is near 0.3 in our calculation.Comment: Latex file,9 pages uuencoded compressed postscript including 4
figure
New Physics and CP Violation in Hyperon Nonleptonic Decays
The sum of the CP-violating asymmetries A(Lambda_-^0) and A(Xi_-^-) in
hyperon nonleptonic decays is presently being measured by the E871 experiment.
We evaluate contributions to the asymmetries induced by chromomagnetic-penguin
operators, whose coefficients can be enhanced in certain models of new physics.
Incorporating recent information on the strong phases in Xi->Lambda pi decay,
we show that new-physics contributions to the two asymmetries can be
comparable. We explore how the upcoming results of E871 may constrain the
coefficients of the operators. We find that its preliminary measurement is
already better than the epsilon parameter of K-Kbar mixing in bounding the
parity-conserving contributions.Comment: 12 pages, 2 figure
REC: Fast sparse regression-based multicategory classification
Recent advance in technology enables researchers to gather and store enormous data sets with ultra high dimensionality. In bioinformatics, microarray and next generation sequencing technologies can produce data with tens of thousands of predictors of biomarkers. On the other hand, the corresponding sample sizes are often limited. For classification problems, to predict new observations with high accuracy, and to better understand the effect of predictors on classification, it is desirable, and often necessary, to train the classifier with variable selection. In the literature, sparse regularized classification techniques have been popular due to the ability of simultaneous classification and variable selection. Despite its success, such a sparse penalized method may have low computational speed, when the dimension of the problem is ultra high. To overcome this challenge, we propose a new sparse REgression based multicategory Classifier (REC). Our method uses a simplex to represent different categories of the classification problem. A major advantage of REC is that the optimization can be decoupled into smaller independent sparse penalized regression problems, and hence solved by using parallel computing. Consequently, REC enjoys an extraordinarily fast computational speed. Moreover, REC is able to provide class conditional probability estimation. Simulated examples and applications on microarray and next generation sequencing data suggest that REC is very competitive when compared to several existing methods
Constraints on accelerating universe using ESSENCE and Gold supernovae data combined with other cosmological probes
We use recently observed data: the 192 ESSENCE type Ia supernovae (SNe Ia),
the 182 Gold SNe Ia, the 3-year WMAP, the SDSS baryon acoustic peak, the X-ray
gas mass fraction in clusters and the observational data to constrain
models of the accelerating universe. Combining the 192 ESSENCE data with the
observational data to constrain a parameterized deceleration parameter,
we obtain the best fit values of transition redshift and current deceleration
parameter , .
Furthermore, using CDM model and two model-independent equation of
state of dark energy, we find that the combined constraint from the 192 ESSENCE
data and other four cosmological observations gives smaller values of
and , but a larger value of than the combined
constraint from the 182 Gold data with other four observations. Finally,
according to the Akaike information criterion it is shown that the recently
observed data equally supports three dark energy models: CDM,
and .Comment: 18 pages, 8 figure
Ponderomotive entangling of atomic motions
We propose the use of ponderomotive forces to entangle the motions of
different atoms. Two situations are analyzed: one where the atoms belong to the
same optical cavity and interact with the same radiation field mode; the other
where each atom is placed in own optical cavity and the output field of one
cavity enters the other.Comment: Revtex file, five pages, two eps figure
An Analytical Study on the Multi-critical Behaviour and Related Bifurcation Phenomena for Relativistic Black Hole Accretion
We apply the theory of algebraic polynomials to analytically study the
transonic properties of general relativistic hydrodynamic axisymmetric
accretion onto non-rotating astrophysical black holes. For such accretion
phenomena, the conserved specific energy of the flow, which turns out to be one
of the two first integrals of motion in the system studied, can be expressed as
a 8 degree polynomial of the critical point of the flow configuration.
We then construct the corresponding Sturm's chain algorithm to calculate the
number of real roots lying within the astrophysically relevant domain of
. This allows, for the first time in literature, to {\it
analytically} find out the maximum number of physically acceptable solution an
accretion flow with certain geometric configuration, space-time metric, and
equation of state can have, and thus to investigate its multi-critical
properties {\it completely analytically}, for accretion flow in which the
location of the critical points can not be computed without taking recourse to
the numerical scheme. This work can further be generalized to analytically
calculate the maximal number of equilibrium points certain autonomous dynamical
system can have in general. We also demonstrate how the transition from a
mono-critical to multi-critical (or vice versa) flow configuration can be
realized through the saddle-centre bifurcation phenomena using certain
techniques of the catastrophe theory.Comment: 19 pages, 2 eps figures, to appear in "General Relativity and
Gravitation
The influence of the preparation methods on the inclusion of model drugs in a β-cyclodextrin cavity
NOTICE: this is the author’s version of a work that was accepted for publication in European Journal of Pharmaceutics and Biopharmaceutics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Eur J Pharm Biopharm. 2009 Feb;71(2):377-386. Epub 2008 Oct 17.The work aims to prove the complexation of two model drugs (ibuprofen, IB and indomethacin, IN) by bcyclodextrin
(bCD), and the effect of water in such a process, and makes a comparison of their complexation
yields. Two methods were considered: kneading of a binary mixture of the drug, bCD, and inclusion
of either IB or IN in aqueous solutions of bCD. In the latter method water was removed by air stream,
spray-drying and freeze-drying. To prove the formation of complexes in final products, optical microscopy,
UV spectroscopy, IR spectroscopy, DSC, X-ray and NMR were considered. Each powder was added
to an acidic solution (pH = 2) to quantify the concentration of the drug inside bCD cavity. Other media
(pH = 5 and 7) were used to prove the existence of drug not complexed in each powder, as the drugs solubility
increases with the pH. It was observed that complexation occurred in all powders, and that the
fraction of drug inside the bCD did not depend neither on the method of complexation nor on the
processes of drying considered
- …