2,789 research outputs found

    A Systematic Electromagnetic-Circuit Method for EMI Analysis of Coupled Interconnects on Dispersive Dielectrics

    Get PDF
    published_or_final_versio

    Impurity state in Haldane gap for S=1 Heisenberg antiferromagnetic chain with bond doping

    Full text link
    Using a new impurity density matrix renormalization group scheme, we establish a reliable picture of how the low lying energy levels of a S=1S=1 Heisenberg antiferromagnetic chain change {\it quantitatively} upon bond doping. A new impurity state gradually occurs in the Haldane gap as J<JJ' < J, while it appears only if J/J>γcJ'/J>\gamma_c with 1/γc=0.7081/\gamma_c=0.708 as J>JJ'>J. The system is non-perturbative as 1J/Jγc1\leq J'/J\leq\gamma_c. This explains the appearance of a new state in the Haldane gap in a recent experiment on Y2x_{2-x}Cax_xBaNiO5_5 [J.F. DiTusa, et al., Phys. Rev. Lett. 73 1857(1994)].Comment: 4 pages of uuencoded gzip'd postscrip

    Impurity Energy Level Within The Haldane Gap

    Full text link
    An impurity bond JJ{'} in a periodic 1D antiferromagnetic, spin 1 chain with exchange JJ is considered. Using the numerical density matrix renormalization group method, we find an impurity energy level in the Haldane gap, corresponding to a bound state near the impurity bond. When J<JJ{'}<J the level changes gradually from the edge of the Haldane gap to the ground state energy as the deviation dev=(JJ)/Jdev=(J-J{'})/J changes from 0 to 1. It seems that there is no threshold. Yet, there is a threshold when J>JJ{'}>J. The impurity level appears only when the deviation dev=(JJ)/Jdev=(J{'}-J)/J{'} is greater than BcB_{c}, which is near 0.3 in our calculation.Comment: Latex file,9 pages uuencoded compressed postscript including 4 figure

    New Physics and CP Violation in Hyperon Nonleptonic Decays

    Full text link
    The sum of the CP-violating asymmetries A(Lambda_-^0) and A(Xi_-^-) in hyperon nonleptonic decays is presently being measured by the E871 experiment. We evaluate contributions to the asymmetries induced by chromomagnetic-penguin operators, whose coefficients can be enhanced in certain models of new physics. Incorporating recent information on the strong phases in Xi->Lambda pi decay, we show that new-physics contributions to the two asymmetries can be comparable. We explore how the upcoming results of E871 may constrain the coefficients of the operators. We find that its preliminary measurement is already better than the epsilon parameter of K-Kbar mixing in bounding the parity-conserving contributions.Comment: 12 pages, 2 figure

    REC: Fast sparse regression-based multicategory classification

    Get PDF
    Recent advance in technology enables researchers to gather and store enormous data sets with ultra high dimensionality. In bioinformatics, microarray and next generation sequencing technologies can produce data with tens of thousands of predictors of biomarkers. On the other hand, the corresponding sample sizes are often limited. For classification problems, to predict new observations with high accuracy, and to better understand the effect of predictors on classification, it is desirable, and often necessary, to train the classifier with variable selection. In the literature, sparse regularized classification techniques have been popular due to the ability of simultaneous classification and variable selection. Despite its success, such a sparse penalized method may have low computational speed, when the dimension of the problem is ultra high. To overcome this challenge, we propose a new sparse REgression based multicategory Classifier (REC). Our method uses a simplex to represent different categories of the classification problem. A major advantage of REC is that the optimization can be decoupled into smaller independent sparse penalized regression problems, and hence solved by using parallel computing. Consequently, REC enjoys an extraordinarily fast computational speed. Moreover, REC is able to provide class conditional probability estimation. Simulated examples and applications on microarray and next generation sequencing data suggest that REC is very competitive when compared to several existing methods

    Constraints on accelerating universe using ESSENCE and Gold supernovae data combined with other cosmological probes

    Full text link
    We use recently observed data: the 192 ESSENCE type Ia supernovae (SNe Ia), the 182 Gold SNe Ia, the 3-year WMAP, the SDSS baryon acoustic peak, the X-ray gas mass fraction in clusters and the observational H(z)H(z) data to constrain models of the accelerating universe. Combining the 192 ESSENCE data with the observational H(z)H(z) data to constrain a parameterized deceleration parameter, we obtain the best fit values of transition redshift and current deceleration parameter zT=0.6320.127+0.256z_{T}=0.632^{+0.256}_{-0.127}, q0=0.7880.182+0.182q_{0}=-0.788^{+0.182}_{-0.182}. Furthermore, using Λ\LambdaCDM model and two model-independent equation of state of dark energy, we find that the combined constraint from the 192 ESSENCE data and other four cosmological observations gives smaller values of Ω0m\Omega_{0m} and q0q_{0}, but a larger value of zTz_{T} than the combined constraint from the 182 Gold data with other four observations. Finally, according to the Akaike information criterion it is shown that the recently observed data equally supports three dark energy models: Λ\LambdaCDM, wde(z)=w0w_{de}(z)=w_{0} and wde(z)=w0+w1ln(1+z)w_{de}(z)=w_{0}+w_{1}\ln(1+z).Comment: 18 pages, 8 figure

    Ponderomotive entangling of atomic motions

    Get PDF
    We propose the use of ponderomotive forces to entangle the motions of different atoms. Two situations are analyzed: one where the atoms belong to the same optical cavity and interact with the same radiation field mode; the other where each atom is placed in own optical cavity and the output field of one cavity enters the other.Comment: Revtex file, five pages, two eps figure

    An Analytical Study on the Multi-critical Behaviour and Related Bifurcation Phenomena for Relativistic Black Hole Accretion

    Full text link
    We apply the theory of algebraic polynomials to analytically study the transonic properties of general relativistic hydrodynamic axisymmetric accretion onto non-rotating astrophysical black holes. For such accretion phenomena, the conserved specific energy of the flow, which turns out to be one of the two first integrals of motion in the system studied, can be expressed as a 8th^{th} degree polynomial of the critical point of the flow configuration. We then construct the corresponding Sturm's chain algorithm to calculate the number of real roots lying within the astrophysically relevant domain of R\mathbb{R}. This allows, for the first time in literature, to {\it analytically} find out the maximum number of physically acceptable solution an accretion flow with certain geometric configuration, space-time metric, and equation of state can have, and thus to investigate its multi-critical properties {\it completely analytically}, for accretion flow in which the location of the critical points can not be computed without taking recourse to the numerical scheme. This work can further be generalized to analytically calculate the maximal number of equilibrium points certain autonomous dynamical system can have in general. We also demonstrate how the transition from a mono-critical to multi-critical (or vice versa) flow configuration can be realized through the saddle-centre bifurcation phenomena using certain techniques of the catastrophe theory.Comment: 19 pages, 2 eps figures, to appear in "General Relativity and Gravitation

    The influence of the preparation methods on the inclusion of model drugs in a β-cyclodextrin cavity

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in European Journal of Pharmaceutics and Biopharmaceutics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Eur J Pharm Biopharm. 2009 Feb;71(2):377-386. Epub 2008 Oct 17.The work aims to prove the complexation of two model drugs (ibuprofen, IB and indomethacin, IN) by bcyclodextrin (bCD), and the effect of water in such a process, and makes a comparison of their complexation yields. Two methods were considered: kneading of a binary mixture of the drug, bCD, and inclusion of either IB or IN in aqueous solutions of bCD. In the latter method water was removed by air stream, spray-drying and freeze-drying. To prove the formation of complexes in final products, optical microscopy, UV spectroscopy, IR spectroscopy, DSC, X-ray and NMR were considered. Each powder was added to an acidic solution (pH = 2) to quantify the concentration of the drug inside bCD cavity. Other media (pH = 5 and 7) were used to prove the existence of drug not complexed in each powder, as the drugs solubility increases with the pH. It was observed that complexation occurred in all powders, and that the fraction of drug inside the bCD did not depend neither on the method of complexation nor on the processes of drying considered
    corecore