1,424 research outputs found

    Regular S-Brane Backgrounds

    Full text link
    We construct time-dependent S-brane solutions to the supergravity field equations in various dimensions which (unlike most such geometries) do not contain curvature singularities. The configurations we consider are less symmetric than are earlier solutions, with our simplest solution being obtained by a simple analytical continuation of the Kerr geometry. We discuss in detail the global structure and properties of this background. We then generalize it to higher dimensions and to include more complicated field configurations - like non vanishing scalars and antisymmetric tensor gauge potentials - by the usual artifice of applying duality symmetries.Comment: 22 pages, 3 figures. Typos in eq.(2.6) correcte

    Supergravity Solutions for Harmonic, Static and Flux S-Branes

    Full text link
    We seek S-brane solutions in D=11 supergravity which can be characterized by a harmonic function H on the flat transverse space. It turns out that the Einstein's equations force H to be a linear function of the transverse coordinates. The codimension one H=0 hyperplane can be spacelike, timelike or null and the spacelike case reduces to the previously obtained SM2 or SM5 brane solutions. We then consider static S-brane configurations having smeared timelike directions where the transverse Lorentzian symmetry group is broken down to its maximal orthogonal subgroup. Assuming that the metric functions depend on a radial spatial coordinate, we construct explicit solutions in D=11 supergravity which are non-supersymmetric and asymptotically flat. Finally, we obtain spacelike fluxbrane backgrounds which have timelike electric or magnetic fluxlines extending from past to future infinity.Comment: 22 pages, v2: references adde

    Non-Standard Intersections of S-Branes in D=11 Supergravity

    Full text link
    We construct new intersecting S-brane solutions in 11-dimensional supergravity which do not have supersymmetric analogs. They are obtained by letting brane charges to be proportional to each other. Solutions fall into two categories with respect to whether there is a non-diagonal term to be cancelled in the field equations or not. In each case we show that they can be constructed by using a simple set of rules which is similar to the harmonic function rule of the usual static p-branes. Furthermore, we study an intersection where the Chern-Simons term makes a non-zero contribution to the field equations. We show that this configuration has a singularity like other S-branes.Comment: 13 pages, 2 figures;v2 Section 2.2 is improved with new examples, references added;v3 typos correcte

    General Brane Geometries from Scalar Potentials: Gauged Supergravities and Accelerating Universes

    Full text link
    We find broad classes of solutions to the field equations for d-dimensional gravity coupled to an antisymmetric tensor of arbitrary rank and a scalar field with non-vanishing potential. Our construction generates these configurations from the solution of a single nonlinear ordinary differential equation, whose form depends on the scalar potential. For an exponential potential we find solutions corresponding to brane geometries, generalizing the black p-branes and S-branes known for the case of vanishing potential. These geometries are singular at the origin with up to two (regular) horizons. Their asymptotic behaviour depends on the parameters of the model. When the singularity has negative tension or the cosmological constant is positive we find time-dependent configurations describing accelerating universes. Special cases give explicit brane geometries for (compact and non-compact) gauged supergravities in various dimensions, as well as for massive 10D supergravity, and we discuss their interrelation. Some examples lift to give new solutions to 10D supergravity. Limiting cases with a domain wall structure preserve part of the supersymmetries of the vacuum. We also consider more general potentials, including sums of exponentials. Exact solutions are found for these with up to three horizons, having potentially interesting cosmological interpretation. We give several additional examples which illustrate the power of our techniques.Comment: 54 pages, 6 figures. Uses JHEP3. Published versio

    TNF-α and TNF-β Gene Polymorphism in Saudi Rheumatoid Arthritis Patients

    Get PDF
    Background Tumor necrosis factor (TNF)-α and -β are cytokines with a wide range of inflammatory, apoptotic and immunomodulatory activities. TNF-α promoter –308 G < A polymorphism has been reported to be associated with rheumatoid arthritis (RA) with inconsistent results. Objective The aim of this study is to elucidate a possible association of TNF-α (G–308A) and TNF-β (A+252G) polymorphisms with the susceptibility of RA in Saudi patients. Patients and Methods This case control study consisted of 232 Saudi subjects including 106 RA patients and 126 matched controls. Genomic DNA was extracted using QIAamp R DNA mini kit (Qiagen CA, USA). TNF-α and TNF-β genes were amplified using Arms primers. Results The frequencies of TNF-α (–308) allele G and genotype GG were significantly higher in RA patients as compared to controls while allele A and genotype AA were predominant in control group. On the other hand the frequency of TNF-β (+252) GG and AA genotypes were significantly higher in RA patients as compared to controls while GA genotype was predominant in controls. It was inferred that genotype GG positive individuals at position –308 of TNF-α were susceptible to RA while genotype AA might has a protective effect on RA susceptibility in Saudis. Whereas GG and AA genotype of TNF-β at +252 position might exert additive susceptibility to RA and GA might be refractory. However, there was no significant association between duration of morning stiffness, RF positivity and number of joints involved and distribution of alleles/genotypes of TNF-α (–308) or TNF-β (+252) polymorphism. It may be concluded that the TNF-α (–308) and TNF-β (+252) polymorphisms might influence the susceptibility to RA in Saudi population. These results might have prognostic value for future clinical observations

    Density Matrix in Quantum Mechanics and Distinctness of Ensembles Having the Same Compressed Density Matrix

    Full text link
    We clarify different definitions of the density matrix by proposing the use of different names, the full density matrix for a single-closed quantum system, the compressed density matrix for the averaged single molecule state from an ensemble of molecules, and the reduced density matrix for a part of an entangled quantum system, respectively. We show that ensembles with the same compressed density matrix can be physically distinguished by observing fluctuations of various observables. This is in contrast to a general belief that ensembles with the same compressed density matrix are identical. Explicit expression for the fluctuation of an observable in a specified ensemble is given. We have discussed the nature of nuclear magnetic resonance quantum computing. We show that the conclusion that there is no quantum entanglement in the current nuclear magnetic resonance quantum computing experiment is based on the unjustified belief that ensembles having the same compressed density matrix are identical physically. Related issues in quantum communication are also discussed.Comment: 26 pages. To appear in Foundations of Physics, 36 (8), 200

    Accurate Single Image Multi-Modal Camera Pose Estimation

    Get PDF
    Abstract. A well known problem in photogrammetry and computer vision is the precise and robust determination of camera poses with respect to a given 3D model. In this work we propose a novel multi-modal method for single image camera pose estimation with respect to 3D models with intensity information (e.g., LiDAR data with reflectance information). We utilize a direct point based rendering approach to generate synthetic 2D views from 3D datasets in order to bridge the dimensionality gap. The proposed method then establishes 2D/2D point and local region correspondences based on a novel self-similarity distance measure. Correct correspondences are robustly identified by searching for small regions with a similar geometric relationship of local self-similarities using a Generalized Hough Transform. After backprojection of the generated features into 3D a standard Perspective-n-Points problem is solved to yield an initial camera pose. The pose is then accurately refined using an intensity based 2D/3D registration approach. An evaluation on Vis/IR 2D and airborne and terrestrial 3D datasets shows that the proposed method is applicable to a wide range of different sensor types. In addition, the approach outperforms standard global multi-modal 2D/3D registration approaches based on Mutual Information with respect to robustness and speed. Potential applications are widespread and include for instance multispectral texturing of 3D models, SLAM applications, sensor data fusion and multi-spectral camera calibration and super-resolution applications

    Revisiting Generalized Chaplygin Gas as a Unified Dark Matter and Dark Energy Model

    Full text link
    In this paper, we revisit generalized Chaplygin gas (GCG) model as a unified dark matter and dark energy model. The energy density of GCG model is given as ρGCG/ρGCG0=[Bs+(1Bs)a3(1+α)]1/(1+α)\rho_{GCG}/\rho_{GCG0}=[B_{s}+(1-B_{s})a^{-3(1+\alpha)}]^{1/(1+\alpha)}, where α\alpha and BsB_s are two model parameters which will be constrained by type Ia supernova as standard candles, baryon acoustic oscillation as standard rulers and the seventh year full WMAP data points. In this paper, we will not separate GCG into dark matter and dark energy parts any more as adopted in the literatures. By using Markov Chain Monte Carlo method, we find the result: α=0.001260.001260.00126+0.000970+0.00268\alpha=0.00126_{- 0.00126- 0.00126}^{+ 0.000970+ 0.00268} and Bs=0.7750.01610.0338+0.0161+0.0307B_s= 0.775_{- 0.0161- 0.0338}^{+ 0.0161+ 0.0307}.Comment: 6 pages, 4 figure

    Supersymmetric probes on the conifold

    Full text link
    We study the supersymmetric embeddings of different D-brane probes in the AdS_5 x T^{1,1} geometry. The main tool employed is kappa symmetry and the cases studied include D3-, D5- and D7-branes. We find a family of three-cycles of the T^{1,1} space over which a D3-brane can be wrapped supersymmetrically and we determine the field content of the corresponding gauge theory duals. Supersymmetric configurations of D5-branes wrapping a two-cycle and of spacetime filling D7-branes are also found. The configurations in which the entire T^{1,1} space is wrapped by a D5-brane (baryon vertex) and a D7-brane are also studied. Some other embeddings which break supersymmetry but are nevertheless stable are also determined.Comment: 44 pages, LaTeX; v2: typos corrected, references added, discussion of D5-brane embeddings improve

    Localized Intersections of Non-Extremal p-branes and S-branes

    Full text link
    A class of solutions to Supergravity in 10 or 11 dimensions is presented which extends the non-standard or semi-local intersections of Dp-branes to the case of non-extremal p-branes. The type of non-extremal solutions involved in the intersection is free and we provide two examples involving black-branes and/or D-\bar{D} systems. After a rotation among the time coordinate and a relatively transverse radial direction the solutions admit the interpretation of an intersection among D-branes and S-branes. We speculate on the relevance of these configurations both to study time dependent phenomena in the AdS/CFT correspondence as well as to construct cosmological brane-world scenarios within String Theory admitting accelerating expansion of the Universe.Comment: 31 pages, latex file; v2: typos corrected and references adde
    corecore