83,416 research outputs found

    Quantum Corrals, Eigenmodes and Quantum Mirages in s-wave Superconductors

    Full text link
    We study the electronic structure of magnetic and non-magnetic quantum corrals embedded in s-wave superconductors. We demonstrate that a quantum mirage of an impurity bound state peak can be projected from the occupied into the empty focus of a non-magnetic quantum corral via the excitation of the corral's eigenmodes. We observe an enhanced coupling between magnetic impurities inside the corral, which can be varied through oscillations in the corral's impurity potential. Finally, we discuss the form of eigenmodes in magnetic quantum corrals.Comment: 4 pages, 4 figure

    From the Complete Yang Model to Snyder's Model, de Sitter Special Relativity and Their Duality

    Full text link
    By means of Dirac procedure, we re-examine Yang's quantized space-time model, its relation to Snyder's model, the de Sitter special relativity and their UV-IR duality. Starting from a dimensionless dS_5-space in a 5+1-d Mink-space a complete Yang model at both classical and quantum level can be presented and there really exist Snyder's model, the dS special relativity and the duality.Comment: 7 papge

    Mode-Locked Two-Photon States

    Full text link
    The concept of mode locking in laser is applied to a two-photon state with frequency entanglement. Cavity enhanced parametric down-conversion is found to produce exactly such a state. The mode-locked two-photon state exhibits a comb-like correlation function. An unbalanced Hong-Ou-Mandel type interferometer is used to measure the correlation function. A revival of the typical interference dip is observed. We will discuss schemes for engineering of quantum states in time domain.Comment: 4 pages, 5 figure

    Multiscale simulations in simple metals: a density-functional based methodology

    Full text link
    We present a formalism for coupling a density functional theory-based quantum simulation to a classical simulation for the treatment of simple metallic systems. The formalism is applicable to multiscale simulations in which the part of the system requiring quantum-mechanical treatment is spatially confined to a small region. Such situations often arise in physical systems where chemical interactions in a small region can affect the macroscopic mechanical properties of a metal. We describe how this coupled treatment can be accomplished efficiently, and we present a coupled simulation for a bulk aluminum system.Comment: 15 pages, 7 figure

    Non-Thermal X-ray Properties of Rotation Powered Pulsars and Their Wind Nebulae

    Full text link
    We present a statistical study of the non-thermal X-ray emission of 27 young rotation powered pulsars (RPPs) and 24 pulsar wind nebulae (PWNe) by using the Chandra and the XMM-Newton observations, which with the high spatial resolutions enable us to spatially resolve pulsars from their surrounding PWNe. We obtain the X-ray luminosities and spectra separately for RPPs and PWNe, and then investigate their distribution and relation to each other as well as the relation with the pulsar rotational parameters. In the pair-correlation analysis we find that: (1) the X-ray (2-10 keV) luminosities of both pulsar and PWN (L_{psr} and L_{pwn}) display a strong correlation with pulsar spin down power Edot and characteristic age, and the scalings resulting from a simple linear fit to the data are L_{psr} \propto Edot^{0.92 \pm 0.04} and L_{pwn} \propto Edot^{1.45 \pm 0.08} (68% confidence level), respectively, however, both the fits are not statistically acceptable; (2) L_{psr} also shows a possible weak correlation with pulsar period P and period derivative Pdot, whereas L_{pwn} manifests a similar weak correlation with Pdot only; (3) The PWN photon index Gamma_{pwn} is positively correlated with L_{pwn} and L_{pwn}/Edot. We also found that the PWN X-ray luminosity is typically 1 to 10 times larger than that from the underlying pulsar, and the PWN photon indices span a range of ~1.5 to ~2. The statistic study of PWN spectral properties supports the particle wind model in which the X-ray emitting electrons are accelerated by the termination shock of the wind.Comment: 15 pages, 9 figures, 3 Tables, ApJ accepted version. Substantial revision, especially luminosity uncertainty taken into accounted and one fig added. Main conclusions unchange

    |V_ub| and |V_cb|, Charm Counting and Lifetime Differences in Inclusive Bottom Hadron Decays

    Full text link
    Inclusive bottom hadron decays are analyzed based on the heavy quark effective field theory (HQEFT). Special attentions in this paper are paid to the b\to u transitions and nonspectator effects. As a consequence, the CKM quark mixing matrix elements |V_ub| and |V_cb| are reliably extracted from the inclusive semileptonic decays B\to X_u e \nu and B\to X_c e \nu. Various observables, such as the semileptonic branch ratio B_SL, the lifetime differences among B^-, B^0, B_s and \Lambda_b hadrons, the charm counting n_c, are predicted and found to be consistent with the present experimental data.Comment: 20 pages, Revtex, 4 figures and 2 table
    corecore