37,720 research outputs found
Integrated Node Encoder for Labelled Textual Networks
Voluminous works have been implemented to exploit content-enhanced network
embedding models, with little focus on the labelled information of nodes.
Although TriDNR leverages node labels by treating them as node attributes, it
fails to enrich unlabelled node vectors with the labelled information, which
leads to the weaker classification result on the test set in comparison to
existing unsupervised textual network embedding models. In this study, we
design an integrated node encoder (INE) for textual networks which is jointly
trained on the structure-based and label-based objectives. As a result, the
node encoder preserves the integrated knowledge of not only the network text
and structure, but also the labelled information. Furthermore, INE allows the
creation of label-enhanced vectors for unlabelled nodes by entering their node
contents. Our node embedding achieves state-of-the-art performances in the
classification task on two public citation networks, namely Cora and DBLP,
pushing benchmarks up by 10.0\% and 12.1\%, respectively, with the 70\%
training ratio. Additionally, a feasible solution that generalizes our model
from textual networks to a broader range of networks is proposed.Comment: 7 page
Semi-Supervised Learning for Neural Keyphrase Generation
We study the problem of generating keyphrases that summarize the key points
for a given document. While sequence-to-sequence (seq2seq) models have achieved
remarkable performance on this task (Meng et al., 2017), model training often
relies on large amounts of labeled data, which is only applicable to
resource-rich domains. In this paper, we propose semi-supervised keyphrase
generation methods by leveraging both labeled data and large-scale unlabeled
samples for learning. Two strategies are proposed. First, unlabeled documents
are first tagged with synthetic keyphrases obtained from unsupervised keyphrase
extraction methods or a selflearning algorithm, and then combined with labeled
samples for training. Furthermore, we investigate a multi-task learning
framework to jointly learn to generate keyphrases as well as the titles of the
articles. Experimental results show that our semi-supervised learning-based
methods outperform a state-of-the-art model trained with labeled data only.Comment: To appear in EMNLP 2018 (12 pages, 7 figures, 6 tables
Recommended from our members
Diversification in the international construction business
Economic globalization has created an interdependent market that allows companies to transcend traditional national boundaries to conduct business overseas. In the international construction market, companies often adopt diversification as a strategy for growth, for risk management or for both. However, the diversification patterns of international construction companies (ICCs) as a group are barely clear. The primary aim of this research is to cover this knowledge void by mapping ICCs’ diversification patterns in both business sectors and geographical dispersal. It starts from a literature review of diversification theories. Based on the review, a series of hypotheses relating to ICCs’ diversification are proposed. Data are gleaned from Engineering News-Record, i.e. Bloomberg and Capital IQ, ranging from 2001 to 2015. By testing the hypotheses, it is found that larger ICCs prefer to diversify than their smaller counterparts. Most of the ICCs tend to diversify to geographical markets with similar cultural or institutional environment. Market demands drive ICCs to diversify to different geographical markets while they are more prudential in venturing into new business sectors. The research provides not only valuable insights into diversification patterns of ICCs, but also a solid point of departure for future theoretical and empirical studies
A Novel Distributed Representation of News (DRNews) for Stock Market Predictions
In this study, a novel Distributed Representation of News (DRNews) model is
developed and applied in deep learning-based stock market predictions. With the
merit of integrating contextual information and cross-documental knowledge, the
DRNews model creates news vectors that describe both the semantic information
and potential linkages among news events through an attributed news network.
Two stock market prediction tasks, namely the short-term stock movement
prediction and stock crises early warning, are implemented in the framework of
the attention-based Long Short Term-Memory (LSTM) network. It is suggested that
DRNews substantially enhances the results of both tasks comparing with five
baselines of news embedding models. Further, the attention mechanism suggests
that short-term stock trend and stock market crises both receive influences
from daily news with the former demonstrates more critical responses on the
information related to the stock market {\em per se}, whilst the latter draws
more concerns on the banking sector and economic policies.Comment: 25 page
- …