32 research outputs found
Effect of tensor couplings in a relativistic Hartree approach for finite nuclei
The relativistic Hartree approach describing the bound states of both
nucleons and anti-nucleons in finite nuclei has been extended to include tensor
couplings for the - and -meson. After readjusting the parameters
of the model to the properties of spherical nuclei, the effect of
tensor-coupling terms rises the spin-orbit force by a factor of 2, while a
large effective nucleon mass sustains. The overall
nucleon spectra of shell-model states are improved evidently. The predicted
anti-nucleon spectra in the vacuum are deepened about 20 -- 30 MeV.Comment: 31 pages, 4 postscript figures include
Path Embeddings with Prescribed Edge in the Balanced Hypercube Network
The balanced hypercube network, which is a novel interconnection network for parallel computation and data processing, is a newly-invented variant of the hypercube. The particular feature of the balanced hypercube is that each processor has its own backup processor and they are connected to the same neighbors. A Hamiltonian bipartite graph with bipartition
V
0
∪
V
1
x
∈
V
0
y
∈
V
1
. It is known that each edge is on a Hamiltonian cycle of the balanced hypercube. In this paper, we prove that, for an arbitrary edge
e
in the balanced hypercube, there exists a Hamiltonian path between any two vertices
x
and
y
in different partite sets passing through
e
with
e
≠
x
y
. This result improves some known results
Development of Flowers Buds and Mixed Buds in the Dichasial Inflorescence of <i>Geranium koreanum</i> Kom. (Geraniaceae)
Flower bud differentiation is of great significance for understanding plant evolution and ecological adaptability. The development of flower buds and mixed buds in the dichasial inflorescence of Geranium koreanum was described in this paper. The morphogenesis, surface structure, and organ morphology at different growth stages of G. koreanum buds were examined in detail using scanning electron microscope and stereo microscope. The development of mixed buds started from the flattened apical meristem. The stipule and leaf primordia arose first. Subsequently, the hemispherical meristem was divided into two hemispheres, forming a terminal bud and floral bud primordia, followed by lateral bud differentiation. The formation of the terminal and lateral buds of G. koreanum was sequential and their differentiation positions were also different. The floral bud primordia would develop into two flower units and four bracts. The primordia of a flower bud first formed the sepal primordia, then the stamen and petal primordia, and finally the pistil primordia. Compared to the stamen primordia, the growth of the petal primordia was slower. Finally, all organs, especially the petals and pistil, grew rapidly. When the pistil and petals exceeded the stamens and the petals changed color, the flower bud was ready to bloom
Theoretical Approach and Scale Construction of Patient Privacy Protection Behavior of Doctors in Public Medical Institutions in China: Pilot Development Study
BackgroundConsidering the high incidence of medical privacy disclosure, it is of vital importance to study doctors’ privacy protection behavior and its influencing factors.
ObjectiveWe aim to develop a scale for doctors’ protection of patients’ privacy in Chinese public medical institutions, following construction of a theoretical model framework through grounded theory, and subsequently to validate the scale to measure this protection behavior.
MethodsCombined with the theoretical paradigm of protection motivation theory (PMT) and semistructured interview data, the grounded theory research method, followed by the Delphi expert and group discussion methods, a theoretical framework and initial scale for doctors in Chinese public medical institutions to protect patients' privacy was formed. The adjusted scale was collected online using a WeChat electronic survey measured using a 5-point Likert scale. Exploratory and confirmatory factor analysis (EFA and CFA) and tests to analyze reliability and validity were performed on the sample data. SPSS 19.0 and Amos 26.0 statistical analysis software were used for EFA and CFA of the sample data, respectively.
ResultsAccording to the internal logic of PMT, we developed a novel theoretical framework of a “storyline,” which was a process from being unaware of patients' privacy to having privacy protection behavior, that affected doctors' cognitive intermediary and changed the development of doctors' awareness, finally affecting actual privacy protection behavior in Chinese public medical institutions. Ultimately, we created a scale to measure 18 variables in the theoretical model, comprising 63 measurement items, with a total of 208 doctors participating in the scaling survey, who were predominantly educated to the master’s degree level (n=151, 72.6%). The department distribution was relatively balanced. Prior to EFA, the Kaiser-Meyer-Olkin (KMO) value was 0.702, indicating that the study was suitable for factor analysis. The minimum value of Cronbach α for each study variable was .754, which met the internal consistency requirements of the scale. The standard factor loading value of each potential measurement item in CFA had scores greater than 0.5, which signified that all the items in the scale could effectively converge to the corresponding potential variables.
ConclusionsThe theoretical framework and scale to assess doctors' patient protection behavior in public medical institutions in China fills a significant gap in the literature and can be used to further the current knowledge of physicians’ thought processes and adoption decisions
Phosphorylation of the Twist1-Family Basic Helix-Loop- Helix Transcription Factors Is Involved in Pathological Cardiac Remodeling
Background: The Twist1-family basic helix-loop-helix (bHLH) transcription factors including Twist1, Hand1 and Hand2, play an essential role in heart development and are implicated in pathological heart remodeling. Previously, it was reported that these bHLH transcription factors can be regulated by phosphorylation within the basic-helix I domain, which is involved in developmental processes such as limb formation and trophoblast differentiation. However, how phosphorylation of Twist1 family functions in post-natal heart is elusive. Principal Findings: Here, we generated transgenic mice with over-expression of Hand1 and Twist1 mutants (to mimic or to abolish phosphorylation) in cardiomyocytes and found pathological cardiac remodeling leading to heart failure and sudden death. Gene expression profile analysis revealed up-regulation of growth-promoting genes and down-regulation of metabolic genes. It is well known that aberrant activation of Akt signaling causes pathological cardiac remodeling and results in heart failure. The basic-helix I domain of Twist1 family members contain Akt substrate consensus motif and may be downstream targets of Akt signaling. Using biochemical analysis, we demonstrated that Hand1 and Twist1 were phosphorylated by Akt in the basic-helix I domain. Phosphorylation of Hand1 regulated its transcriptional activation of luciferase reporter genes and DNA binding ability. Conclusions: This study provides novel insights into the regulation of Twist1 family in cardiac remodeling and suggests tha
Total Infectome Characterization of Respiratory Infections during the 2022–23 COVID-19 Outbreak in China Revealed Extensive Coinfections with Links to SARS-CoV-2 Status, Age, and Disease Severity
Between 7 December 2022 and 28 February 2023, China experienced a new wave of COVID-19 that swept across the entire country and resulted in an increasing amount of respiratory infections and hospitalizations. The purpose of this study is to reveal the intensity and composition of coinfecting microbial agents. In total, 196 inpatients were recruited from The Third People’s Hospital of Shenzhen, and 169 respiratory and 73 blood samples were collected for metagenomic next-generation sequencing. The total “Infectome” was characterized and compared across different groups defined by the SARS-CoV-2 detection status, age groups, and severity of disease. Our results revealed a total of 22 species of pathogenic microbes (4 viruses, 13 bacteria, and 5 fungi), and more were discovered in the respiratory tract than in blood. The diversity of the total infectome was highly distinguished between respiratory and blood samples, and it was generally higher in patients that were SARS-CoV-2-positive, older in age, and with more severe disease. At the individual pathogen level, HSV-1 seemed to be the major contributor to these differences observed in the overall comparisons. Collectively, this study reveals the highly complex respiratory infectome and high-intensity coinfection in patients admitted to the hospital during the period of the 2023 COVID-19 pandemic in China