43 research outputs found

    Ensemble Learning Independent Component Analysis of Normal Galaxy Spectra

    Full text link
    In this paper, we employe a new statistical analysis technique, Ensemble Learning for Independent Component Analysis (EL-ICA), on the synthetic galaxy spectra from a newly released high resolution evolutionary model by Bruzual & Charlot. We find that EL-ICA can sufficiently compress the synthetic galaxy spectral library to 6 non-negative Independent Components (ICs), which are good templates to model huge amount of normal galaxy spectra, such as the galaxy spectra in the Sloan Digital Sky Survey (SDSS). Important spectral parameters, such as starlight reddening, stellar velocity dispersion, stellar mass and star formation histories, can be given simultaneously by the fit. Extensive tests show that the fit and the derived parameters are reliable for galaxy spectra with the typical quality of the SDSS.Comment: 41 pages, 23 figures, to be published in A

    Regulatory Effect of Polysaccharides from Antrodia cinnamomea in Submerged Fermentation on Gut Microbiota in Mice with Antibiotic-Associated Diarrhea

    Get PDF
    In order to study the effect of polysaccharides produced by Antrodia cinnamomea in submerged fermentation on the intestinal flora of mice and, more broadly, to develop the potential and application value of A. cinnamomea in the field of functional food, we extracted and characterized intracellular polysaccharides (AIPS) and exopolysaccharides (AEPS) from the submerged cultured mycelia and broth of Antrodia cinnamomea. It was found that AIPS and AEPS were predominantly composed of glucose, galactose and mannose. Their average molecular masses were 3.52 × 106 and 4.16 × 105 Da, respectively. AEPS contained a pyran ring, while AIPS had (–C≡C–H) and (C–O) functional groups. Both AIPS and AEPS had strong digestive resistance as demonstrated by their resistance to α-amylase digestion and simulated gastric digestion. Intragastrically administered AIPS and AEPS significantly increased the relative abundance of some beneficial microorganisms (such as Lactobacillus) in the intestine of mice with lincomycin-caused diarrhea, and significantly reduced the relative abundance of some harmful microorganisms (such as Enterococcus, Staphylococcus, Parasutterella and Shigella) (P < 0.05), AEPS being more significantly better than AIPS. This study can provide a new idea and basis for the development of new multifunctional prebiotics

    Seepage system of oil-gas and its exploration in Yinggehai Basin located at northwest of South China Sea

    No full text
    Seepage systems of oil-gas in Yinggehai Basin are divided into two types, namely: “micro-seepage”, which is presented by gas chimneys and pockmarks; and “macro-seepage”, which is also called oil-gas outflow; and, in addition, the combination of the two basic types. Among the oil seepage systems, the combined seepage system at Yingdong Slope of Yinggehai Basin is the most eye-catching, and gas chimneys and pockmarks micro-leakage systems in mud diapir zones in the central part of the basin are very common. Both the indications of large-scale oil-gas outflow at Yingdong Slope, which have been booming for a hundred years; and the occurrence of pockmarks at the central mud diapir belt, along with the chaotic seismic reflection of widely-distributed shallow gas chimneys—have shown that hydrocarbon in this area is sufficient and oil-gas is now in dynamic equilibrium of the processes of accumulation, migration, gathering and dispersing. It builds up good conditions for the accumulation, migration, gathering and reserving of oil and gas. However, it must be noted that the results of oil-gas exploration at Yingdong Slope didn't turn out to be satisfactory, despite the presence of oil-gas outflow and gas chimney combined seepage systems. So, strengthen synthesized analysis and study on oil-gas seepage systems and on the conditions for accumulation, migration, gathering and dispersing; the forecasting and evaluation to the advantageous conditions for enriched oil and gas zones; and trap preservation in accordance with the dynamic balance theories; are of significant importance for purposes of exploration

    Privacy-Preserving Indoor Trajectory Matching with IoT Devices

    No full text
    With the rapid development of the Internet of Things (IoT) technology, Wi-Fi signals have been widely used for trajectory signal acquisition. Indoor trajectory matching aims to achieve the monitoring of the encounters between people and trajectory analysis in indoor environments. Due to constraints ofn the computation abilities IoT devices, the computation of indoor trajectory matching requires the assistance of a cloud platform, which brings up privacy concerns. Therefore, this paper proposes a trajectory-matching calculation method that supports ciphertext operations. Hash algorithms and homomorphic encryption are selected to ensure the security of different private data, and the actual trajectory similarity is determined based on correlation coefficients. However, due to obstacles and other interferences in indoor environments, the original data collected may be missing in certain stages. Therefore, this paper also complements the missing values on ciphertexts through mean, linear regression, and KNN algorithms. These algorithms can predict the missing parts of the ciphertext dataset, and the accuracy of the complemented dataset can reach over 97%. This paper provides original and complemented datasets for matching calculations, and demonstrates their high feasibility and effectiveness in practical applications from the perspective of calculation time and accuracy loss

    A Practice-Distributed Thunder-Localization System with Crowd-Sourced Smart IoT Devices

    No full text
    Lightning localization is of great significance to weather forecasting, forest fire prevention, aviation, military, and other aspects. Traditional lightning localization requires the deployment of base stations and expensive measurement equipment. With the development of IoT technology and the continuous expansion of application scenarios, IoT devices can be interconnected through sensors and other technical means to ultimately achieve the goal of automatic intelligent computing. Therefore, this paper proposes a low-cost distributed thunder-localization system based on IoT smart devices, namely ThunderLoc. The main idea of ThunderLoc is to collect dual-microphone data from IoT smart devices, such as smartphones or smart speakers, through crowdsourcing, turning the localization problem into a search problem in Hamming space. We studied the dual microphones integrated with smartphones and used the sign of Time Difference Of Arrival (TDOA) as measurement information. Through a simple generalized cross-correlation method, the TDOA of thunderclaps on the same smartphone can be estimated. After quantifying the TDOA measurement from the smartphone node, thunder localization was performed by minimizing the Hamming distance between the binary sequence and the binary vector measured in a database. The ThunderLoc system was evaluated through extensive simulations and experiments (a testbed with 30 smartphone nodes). The extensive experimental results demonstrate that ThunderLoc outperforms the main existing schemes in terms of effectively locating position and good robustness

    Genetic types of Daxing conglomerate bodies and their controls on hydrocarbons in the Langgu Sag, Bohai Bay Basin, East China

    No full text
    The genetic types, porosity and permeability characteristics, as well as oil-gas production capacity of the Daxing conglomerate bodies in the lower and middle sections of Paleogene Sha 3 Member, in the Langgu Sag of the Bohai Bay Basin are studied by combining various data such as seismic, logging, core analysis and formation testing. Three genetic models of conglomerate bodies including faulted-trough gravity flow, grain flow dominated nearshore subaqueous fans, and debris flow dominated nearshore subaqueous fans are built based on core, seismic and logging phases figured out by analyzing the sedimentary settings. The conglomerate bodies generated in faulted-trough flow are composed of matrix supported conglomerates and grain supported conglomerates, in which various kinds of secondary pores are developed; the conglomerate bodies generated in grain flow dominated nearshore subaqueous fans primarily consist of grain supported conglomerates, of which the reservoir space is mainly dissolved pores within gravels, intercrystal pores and fractures; the conglomerate bodies generated in debris flow dominated nearshore subaqueous fans are mainly composed of matrix supported conglomerates and are dominated by dissolved pores within gravels. The conglomerate bodies with different genesis have different reservoir characteristics and oil/gas production capacities. Among them, the conglomerate bodies generated in grain flow dominated nearshore subaqueous fans have the best porosity, permeability and the highest oil/gas production, thus are the key targets for petroleum exploration. Key words: Langgu Sag, Daxing conglomerate bodies, faulted-trough gravity flow, nearshore subaqueous fan, grain flow, debris flo
    corecore