370 research outputs found

    Simulation and Fabrication of Three Novel Micromechanical Sensors

    Get PDF
    This work focuses on the simulation, fabrication and characterization of novel microdevices for chemical and biological sensors for improved sensitivity, enhanced performance and applicability. Specifically, microbridge and microcoil sensors have been fabricated via advanced microfabrication technologies. Due to the potential application in chemical and biological sensing, the growth of gold and platinum nanowires during an electrolysis process have also been investigated. A microbridge can be considered as the head-to-head fusion of two cantilevers and the middle of the bridge would deform in a way similar to a microcantilever. The microbridge sensing device is more stable than the microcantilever, especially in turbulent or vibrational conditions, since both ends are fixed. The trade-off is the low ΔR/R change (sensitivity) of the microbridge compared to that of the microcantilever. Simulation of the microbridge has been conducted via Finite Element Analysis (FEA). The width, thickness and doping level of the piezoresistor play an important part in the sensitivity of the microbridge. Based on the simulation results and following standard microfabrication technology, microbridges have been fabricated. The detection of Hg2+ based on the microbridge platform was investigated for sensor validation. The microcoil hygrometer can be used as a universal tool for the detection of chemical species by depositing a chemical specific coating on one side of the coil. The coil movement can be readily observed by the human eye and it advances as a cost-effective and power-free device. A micro- or nano-scale sized coil provides an outstanding sensor platform with improved dynamic response, greatly reduced size, and the integration of micromechanical components with on-chip electronic circuitry. Following standard microfabrication techniques, an SiO2/Si/SU-8 microcoil has been fabricated. After surface modification by treating the coil with aminopropyltriethoxysilane (APS), the microcoil was exposed to acetic acid vapor in air for characterization. This microcoil device has a potential to be used as a novel microsensor for the detection of chemical and biological species both in air and in solutions. A self-assembled approach to grow gold and platinum nanowires across the gap of two electrodes on a surface using an electrolysis process has been investigated. In this process, the anode electrode is oxidized to form nanowires on the cathode. The DC offset, AC signal frequency and the space between the two electrodes all play important roles in the growth of the nanowires

    On-chip generation and collectively coherent control of the superposition of the whole family of Dicke states

    Full text link
    Integrated quantum photonics has recently emerged as a powerful platform for generating, manipulating, and detecting entangled photons. Multipartite entangled states lie at the heart of the quantum physics and are the key enabling resources for scalable quantum information processing. Dicke state is an important class of genuinely entangled state, which has been systematically studied in the light-matter interactions, quantum state engineering and quantum metrology. Here, by using a silicon photonic chip, we report the generation and collectively coherent control of the entire family of four-photon Dicke states, i.e. with arbitrary excitations. We generate four entangled photons from two microresonators and coherently control them in a linear-optic quantum circuit, in which the nonlinear and linear processing are achieved in a chip-scale device. The generated photons are in telecom band, which lays the groundwork for large-scale photonic quantum technologies for multiparty networking and metrology.Comment: 19 pages, 4 figures in the main text and 13 figures in the Supplemental Materia

    Polarization-entangled quantum frequency comb

    Full text link
    Integrated micro-resonator facilitates the realization of quantum frequency comb (QFC), which provides a large number of discrete frequency modes with broadband spectral range and narrow linewidth. However, all previous demonstrations have focused on the generation of energy-time or time-bin entangled photons from QFC. Realizing polarization-entangled quantum frequency comb, which is the important resource for fundamental study of quantum mechanics and quantum information applications, remains challenging. Here, we demonstrate, for the first time, a broadband polarization-entangled quantum frequency comb by combining an integrated silicon nitride micro-resonator with a Sagnac interferometer. With a free spectral range of about 99 GHz and a narrow linewidth of about 190 MHz, our source provides 22 polarization entangled photons pairs with frequency covering the whole telecom C-band. The entanglement fidelities for all 22 pairs are above 81%, including 17 pairs with fidelities higher than 90%. Our demonstration paves the way for employing the polarization-entangled quantum frequency comb in quantum network using CMOS technology as well as standard dense wavelength division multiplexing technology.Comment: 11 pages, 9 figure

    Sound non-reciprocity based on synthetic magnetism

    Full text link
    Synthetic magnetism has been recently realized using spatiotemporal modulation patterns, producing non-reciprocal steering of charge-neutral particles such as photons and phonons. Here, we design and experimentally demonstrate a non-reciprocal acoustic system composed of three compact cavities interlinked with both dynamic and static couplings, in which phase-correlated modulations induce a synthetic magnetic flux that breaks time-reversal symmetry. Within the rotating wave approximation, the transport properties of the system are controlled to efficiently realize large non-reciprocal acoustic transport. By optimizing the coupling strengths and modulation phases, we achieve frequency-preserved unidirectional transport with 45-dB isolation ratio and 0.85 forward transmission. Our results open to the realization of acoustic nonreciprocal technologies with high efficiency and large isolation, and offer a route towards Floquet topological insulators for sound.Comment: 13 pages, 4 figure

    All-optical spatio-temporal metrology for isolated attosecond pulses

    Full text link
    Characterizing an isolated attosecond pulse (IAP) is essential for its potential applications. A complete characterization of an IAP ultimately requires the determination of its electric field in both time and space domains. However, previous methods, like the widely-used RABBITT and attosecond streaking, only measure the temporal profile of the attosecond pulse. Here we demonstrate an all-optical method for the measurement of the space-time properties of an IAP. By introducing a non-collinear perturbing pulse to the driving field, the process of IAP generation is modified both spatially and temporally, manifesting as a spatial and a frequency modulation in the harmonic spectrum. By using a FROG-like retrieval method, the spatio-spectral phases of the harmonic spectrum are faithfully extracted from the induced spatio-spectral modulations, which allows a thoroughgoing characterization of the IAP in both time and space. With this method, the spatio-temporal structures of the IAP generated in a two-color driving field in both the near- and far-field are fully reconstructed, from which a weak spatio-temporal coupling in the IAP generation is revealed. Our approach overcomes the limitation in the temporal measurement in conventional in situ scheme, providing a reliable and holistic metrology for IAP characterization.Comment: 18 pages, 5 figure

    Effect of hydrodynamic heterogeneity on particle dispersion in a Taylor-Couette flow reactor with variable configurations of inner cylinder

    Get PDF
    BackgroundEffect of hydrodynamic heterogeneity on particle dispersion in a Taylor-Couette flow (TC) reactor with variable configurations of inner cylinder has been investigated using CFD modelling.MethodsParticle dispersion was tracked based on the Eulerian-Lagrangian approach, where the reactant solution phase was solved in the Eulerian reference frame, while the particle dispersion was calculated by tracking a large number of particles with consideration of the hydrodynamic forces acting on particles and adopting actual particle properties measured from the particle synthesis experiments.Significant FindingsThe simulation reveals that particle dispersion is significantly enhanced by increasing the inner cylinder rotational speed, characterized by particle distribution for both circular inner cylinder Taylor-Couette flow reactor (CTC) and lobed cross-section inner cylinder Taylor-Couette flow reactor (LTC). Particle trajectories or dispersion are influenced by the turbulent Taylor vortices. Particle radial dispersion affects the particle classification by presenting different particle axial velocities in radial direction, while particle axial dispersion can be seen as an indicator for global mixing occurring in the TC reactor, which is enhanced at high rotational speed, especially in the LTC. The calculated dispersion coefficient is found to be similar to the shape of particle size distribution found in the experiments
    corecore