60,780 research outputs found
Superconductivity and Phase Diagram in (LiFe)OHFeSeS
A series of (LiFe)OHFeSeS (0 x 1)
samples were successfully synthesized via hydrothermal reaction method and the
phase diagram is established. Magnetic susceptibility suggests that an
antiferromagnetism arising from (LiFe)OH layers coexists with
superconductivity, and the antiferromagnetic transition temperature nearly
remains constant for various S doping levels. In addition, the lattice
parameters of the both a and c axes decrease and the superconducting transition
temperature T is gradually suppressed with the substitution of S for Se,
and eventually superconductivity vanishes at = 0.90. The decrease of T
could be attributed to the effect of chemical pressure induced by the smaller
ionic size of S relative to that of Se, being consistent with the effect of
hydrostatic pressure on (LiFe)OHFeSe. But the detailed
investigation on the relationships between and the crystallographic
facts suggests a very different dependence of on anion height from
the Fe2 layer or -Fe2- angle from those in FeAs-based superconductors.Comment: 6 pages, 6 figure
More on general -brane solutions
Recently it was found that the complete integration of the
Einstein-dilaton-antisymmetric form equations depending on one variable and
describing static singly charged -branes leads to two and only two classes
of solutions: the standard asymptotically flat black -brane and the
asymptotically non-flat -brane approaching the linear dilaton background at
spatial infinity. Here we analyze this issue in more details and generalize the
corresponding uniqueness argument to the case of partially delocalized branes.
We also consider the special case of codimension one and find, in addition to
the standard domain wall, the black wall solution. Explicit relations between
our solutions and some recently found -brane solutions ``with extra
parameters'' are presented.Comment: 29 pages, 2 figure
Intrinsic Parameters of GRB990123 from Its Prompt Optical Flash and Afterglow
We have constrained the intrinsic parameters, such as the magnetic energy
density fraction (), the electron energy density fraction
(), the initial Lorentz factor () and the Lorentz factor
of the reverse external shock (), of GRB990123, in terms of the
afterglow information (forward shock model) and the optical flash information
(reverse shock model). Our result shows: 1) the inferred values of
and are consistent with the suggestion that they may be universal
parameters, comparing to those inferred for GRB970508; 2) the reverse external
shock may have become relativistic before it passed through the ejecta shell.
Other instrinsic parameters of GRB990123, such as energy contained in the
forward shock and the ambient density are also determined and discussed
in this paper.Comment: 5 pages, MN LaTeX style, a few changes made according to referee's
suggestions, references up dated, MNRAS accepte
An exact algorithm for finding cancer driver somatic genome alterations: The weighted mutually exclusive maximum set cover problem
Background: The mutual exclusivity of somatic genome alterations (SGAs), such as somatic mutations and copy number alterations, is an important observation of tumors and is widely used to search for cancer signaling pathways or SGAs related to tumor development. However, one problem with current methods that use mutual exclusivity is that they are not signal-based; another problem is that they use heuristic algorithms to handle the NP-hard problems, which cannot guarantee to find the optimal solutions of their models. Method: In this study, we propose a novel signal-based method that utilizes the intrinsic relationship between SGAs on signaling pathways and expression changes of downstream genes regulated by pathways to identify cancer signaling pathways using the mutually exclusive property. We also present a relatively efficient exact algorithm that can guarantee to obtain the optimal solution of the new computational model. Results: We have applied our new model and exact algorithm to the breast cancer data. The results reveal that our new approach increases the capability of finding better solutions in the application of cancer research. Our new exact algorithm has a time complexity of O* (1.325m)(Note: Following the recent convention, we use a star * to represent that the polynomial part of the time complexity is neglected), which has solved the NP-hard problem of our model efficiently. Conclusion: Our new method and algorithm can discover the true causes behind the phenotypes, such as what SGA events lead to abnormality of the cell cycle or make the cell metastasis lose control in tumors; thus, it identifies the target candidates for precision (or target) therapeutics
Optical Flashes and Very Early Afterglows in Wind Environments
The interaction of a relativistic fireball with its ambient medium is
described through two shocks: a reverse shock that propagates into the
fireball, and a forward shock that propagates into the medium. The observed
optical flash of GRB 990123 has been considered to be the emission from such a
reverse shock. The observational properties of afterglows suggest that the
progenitors of some GRBs may be massive stars and their surrounding media may
be stellar winds. We here study very early afterglows from the reverse and
forward shocks in winds. An optical flash mainly arises from the relativistic
reverse shock while a radio flare is produced by the forward shock. The peak
flux densities of optical flashes are larger than 1 Jy for typical parameters,
if we do not take into account some appropriate dust obscuration along the line
of sight. The radio flare always has a long lasting constant flux, which will
not be covered up by interstellar scintillation. The non-detections of optical
flashes brighter than about 9th magnitude may constrain the GRBs isotropic
energies to be no more than a few ergs and wind intensities to be
relatively weak.Comment: 21 pages, 6 figures, accepted by MNRAS on March 7, 200
Spin-dependent resonant tunneling through quantum-well states in magnetic metallic thin films
Quantum-well (QW) states in {\it nonmagnetic} metal layers contained in
magnetic multilayers are known to be important in spin-dependent transport, but
the role of QW states in {\it magnetic} layers remains elusive. Here we
identify the conditions and mechanisms for resonant tunneling through QW states
in magnetic layers and determine candidate structures. We report
first-principles calculations of spin-dependent transport in epitaxial
Fe/MgO/FeO/Fe/Cr and Co/MgO/Fe/Cr tunnel junctions. We demonstrate the
formation of sharp QW states in the Fe layer and show discrete conductance
jumps as the QW states enter the transport window with increasing bias. At
resonance, the current increases by one to two orders of magnitude. The
tunneling magnetoresistance ratio is several times larger than in simple spin
tunnel junctions and is positive (negative) for majority- (minority-) spin
resonances, with a large asymmetry between positive and negative biases. The
results can serve as the basis for novel spintronic devices.Comment: 4 figures in 5 eps file
- …