69 research outputs found

    Using member galaxy luminosities as halo mass proxies of galaxy groups

    Full text link
    Reliable halo mass estimation for a given galaxy system plays an important role both in cosmology and galaxy formation studies. Here we set out to find the way that can improve the halo mass estimation for those galaxy systems with limited brightest member galaxies been observed. Using four mock galaxy samples constructed from semi-analytical formation models, the subhalo abundance matching method and the conditional luminosity functions, respectively, we find that the luminosity gap between the brightest and the subsequent brightest member galaxies in a halo (group) can be used to significantly reduce the scatter in the halo mass estimation based on the luminosity of the brightest galaxy alone. Tests show that these corrections can significantly reduce the scatter in the halo mass estimations by ∼50%\sim 50\% to ∼70%\sim 70\% in massive halos depending on which member galaxies are considered. Comparing to the traditional ranking method, we find that this method works better for groups with less than five members, or in observations with very bright magnitude cut.Comment: ApJ accepte

    The Chocolate Chip Cookie Model: dust-to-metal ratio of HII regions

    Full text link
    Using a sample of face-on star-forming galaxies selected from the Sloan Digital Sky Survey, we statistically derive the typical optical depth Ï„cl\tau_{\rm{cl}} of individual HII regions based on the ``Chocolate Chip Cookie" model of Lu2022. By binning galaxies into stellar mass and gas-phase metallicity bins and interpreting Ï„cl\tau_{\rm{cl}} as the dust to gas ratio (DGR) of HII regions, we further investigate the correlations among DGR and stellar mass, gas-phase metallicity respectively. We find that DGR increases monotonically with the stellar mass of galaxies. At a given stellar mass, DGR shows a linear correlation with the gas-phase metallicity, which implies a constant dust to metal ratio (DTM) of galaxies at a given stellar mass. These results adequately indicate that the DTM of galaxies is simply a function of their stellar masses. In terms of gas-phase metallicity, because of the mass-metalliciy relation, DTM increases with increasing metallicity with a power-law index 1.45 in the low metallicity region, while remains constant at the high metallicity end.Comment: 9 pages, 4 figure
    • …
    corecore