177,851 research outputs found
Source bearing and steering-vector estimation using partially calibrated arrays
The problem of source direction-of-arrival (DOA) estimation using a sensor array is addressed, where some of the sensors are perfectly calibrated, while others are uncalibrated. An algorithm is proposed for estimating the source directions in addition to the estimation of unknown array parameters such as sensor gains and phases, as a way of performing array self-calibration. The cost function is an extension of the maximum likelihood (ML) criteria that were originally developed for DOA estimation with a perfectly calibrated array. A particle swarm optimization (PSO) algorithm is used to explore the high-dimensional problem space and find the global minimum of the cost function. The design of the PSO is a combination of the problem-independent kernel and some newly introduced problem-specific features such as search space mapping, particle velocity control, and particle position clipping. This architecture plus properly selected parameters make the PSO highly flexible and reusable, while being sufficiently specific and effective in the current application. Simulation results demonstrate that the proposed technique may produce more accurate estimates of the source bearings and unknown array parameters in a cheaper way as compared with other popular methods, with the root-mean-squared error (RMSE) approaching and asymptotically attaining the Cramer Rao bound (CRB) even in unfavorable conditions
Sampling Sparse Signals on the Sphere: Algorithms and Applications
We propose a sampling scheme that can perfectly reconstruct a collection of
spikes on the sphere from samples of their lowpass-filtered observations.
Central to our algorithm is a generalization of the annihilating filter method,
a tool widely used in array signal processing and finite-rate-of-innovation
(FRI) sampling. The proposed algorithm can reconstruct spikes from
spatial samples. This sampling requirement improves over
previously known FRI sampling schemes on the sphere by a factor of four for
large . We showcase the versatility of the proposed algorithm by applying it
to three different problems: 1) sampling diffusion processes induced by
localized sources on the sphere, 2) shot noise removal, and 3) sound source
localization (SSL) by a spherical microphone array. In particular, we show how
SSL can be reformulated as a spherical sparse sampling problem.Comment: 14 pages, 8 figures, submitted to IEEE Transactions on Signal
Processin
Local pinning of networks of multi-agent systems with transmission and pinning delays
We study the stability of networks of multi-agent systems with local pinning
strategies and two types of time delays, namely the transmission delay in the
network and the pinning delay of the controllers. Sufficient conditions for
stability are derived under specific scenarios by computing or estimating the
dominant eigenvalue of the characteristic equation. In addition, controlling
the network by pinning a single node is studied. Moreover, perturbation methods
are employed to derive conditions in the limit of small and large pinning
strengths.Numerical algorithms are proposed to verify stability, and simulation
examples are presented to confirm the efficiency of analytic results.Comment: 6 pages, 3 figure
- …