4,049 research outputs found

    First-Principles Simulations of Inelastic Electron Tunneling Spectroscopyof Molecular Junctions

    Full text link
    A generalized Green's function theory is developed to simulate the inelastic electron tunneling spectroscopy (IETS) of molecular junctions. It has been applied to a realistic molecular junction with an octanedithiolate embedded between two gold contacts in combination with the hybrid density functional theory calculations. The calculated spectra are in excellent agreement with recent experimental results. Strong temperature dependence of the experimental IETS spectra is also reproduced. It is shown that the IETS is extremely sensitive to the intra-molecular conformation and to the molecule-metal contact geometry

    Autoencoding Conditional GAN for Portfolio Allocation Diversification

    Get PDF
    Over the decades, the Markowitz framework has been used extensively in portfolio analysis though it puts too much emphasis on the analysis of the market uncertainty rather than on the trend prediction. While generative adversarial network (GAN) and conditional GAN (CGAN) have been explored to generate financial time series and extract features that can help portfolio analysis. The limitation of the CGAN framework stands in putting too much emphasis on generating series rather than keeping features that can help this generator. In this paper, we introduce an autoencoding CGAN (ACGAN) based on deep generative models that learns the internal trend of historical data while modeling market uncertainty and future trends. We evaluate the model on several real-world datasets from both the US and Europe markets, and show that the proposed ACGAN model leads to better portfolio allocation and generates series that are closer to true data compared to the existing Markowitz and CGAN approaches

    Periodic Radio Variability in NRAO 530: Phase Dispersion Minimization Analysis

    Full text link
    In this paper, a periodicity analysis of the radio light curves of the blazar NRAO 530 at 14.5, 8.0, and 4.8 GHz is presented employing an improved Phase Dispersion Minimization (PDM) technique. The result, which shows two persistent periodic components of ∼6 \sim 6 and ∼10 \sim 10 years at all three frequencies, is consistent with the results obtained with the Lomb-Scargle periodogram and weighted wavelet Z-transform algorithms. The reliability of the derived periodicities is confirmed by the Monte Carlo numerical simulations which show a high statistical confidence. (Quasi-)Periodic fluctuations of the radio luminosity of NRAO 530 might be associated with the oscillations of the accretion disk triggered by hydrodynamic instabilities of the accreted flow. \keywords{methods: statistical -- galaxies: active -- galaxies: quasar: individual: NRAO 530}Comment: 8 pages, 5 figures, accepted by RA

    Reducing the Tension Between the BICEP2 and the Planck Measurements: A Complete Exploration of the Parameter Space

    Get PDF
    A large inflationary tensor-to-scalar ratio r0.002=0.20βˆ’0.05+0.07r_\mathrm{0.002} = 0.20^{+0.07}_{-0.05} is reported by the BICEP2 team based on their B-mode polarization detection, which is outside of the 95%95\% confidence level of the Planck best fit model. We explore several possible ways to reduce the tension between the two by considering a model in which Ξ±s\alpha_\mathrm{s}, ntn_\mathrm{t}, nsn_\mathrm{s} and the neutrino parameters NeffN_\mathrm{eff} and Ξ£mΞ½\Sigma m_\mathrm{\nu} are set as free parameters. Using the Markov Chain Monte Carlo (MCMC) technique to survey the complete parameter space with and without the BICEP2 data, we find that the resulting constraints on r0.002r_\mathrm{0.002} are consistent with each other and the apparent tension seems to be relaxed. Further detailed investigations on those fittings suggest that NeffN_\mathrm{eff} probably plays the most important role in reducing the tension. We also find that the results obtained from fitting without adopting the consistency relation do not deviate much from the consistency relation. With available Planck, WMAP, BICEP2 and BAO datasets all together, we obtain r0.002=0.14βˆ’0.11+0.05r_{0.002} = 0.14_{-0.11}^{+0.05}, nt=0.35βˆ’0.47+0.28n_\mathrm{t} = 0.35_{-0.47}^{+0.28}, ns=0.98βˆ’0.02+0.02n_\mathrm{s}=0.98_{-0.02}^{+0.02}, and Ξ±s=βˆ’0.0086βˆ’0.0189+0.0148\alpha_\mathrm{s}=-0.0086_{-0.0189}^{+0.0148}; if the consistency relation is adopted, we get r0.002=0.22βˆ’0.06+0.05r_{0.002} = 0.22_{-0.06}^{+0.05}.Comment: 8 pages, 4 figures, submitted to PL
    • …
    corecore