204 research outputs found
A Experimental Research On The Anti-erosion Material For Hydraulic Machinery
International audienceHydraulic machinery used in many fields was badly eroded, but it was found that not enough has been done on the erosion mechanism and the anti-erosion material. By using a rotating jet erosion testbed, four kinds of materials were tested under different dynamics parameters. At the same time, aluminum bronze was tested under different size of sand particle. Some conclusions can been obtained after observing material surface by SEM. With the increase of Impacting velocity , the damage of material surface became serious and weight loss got bigger. With the increase of the impacting angle, the weight loss first increased and then decreased. At the same dynamics parameters, because surface damages of 06Cr19Ni10 and 45Cr are small, so 06Cr19Ni10 and 45Cr had the better anti-erosion performance. However, Q235 had worse anti-erosion performance. With the increase of sand size, the erosion of material surface got worse, and weight loss had an obviously change between 0.4mm and 0.5mm
Colloidal toxic trace metals in urban riverine and estuarine waters of Yantai City, southern coast of North Yellow Sea
The environmental characteristics of colloidal toxic trace metals Cd, Cu and Pb in riverine and estuarine waters collected from two urban rivers of Yantai City in eastern China, the Guangdang and Xin'an Rivers, were investigated using a modified centrifugal ultrafiltration (CUF) method in conjunction with acid extraction and inductively coupled plasma mass spectrometry. The target metals in dissolved pool were divided into four CUF fractions, i.e. <1 kDa, 1-3 kDa, 3-10 kDa and 10 kDa-0.2 mu m, and the results showed that colloidal Cd, Cu and Pb were dominated by 1-10 kDa (1-3 and 3-10 kDa), 1-3 kDa and 10 kDa-0.2 lm fractions, respectively. The coagulation/flocculation of low-molecular-weight (1-10 kDa) colloidal Cd and Cu in the estuaries was obvious and strong, while the enrichment of dissolved Pb in the 10 kDa-0.2 lm fraction may be mainly related to its biogeochemical interactions with Fe-oxides, which is easy to occur in macromolecular colloids. In addition, the actual molecular weight cutoffs (MWCOs) of the three used CUF units with nominal MWCOs of 1, 3 and 10 kDa were determined to be 4.9, 8.5 and 33.9 kDa, respectively, indicating that membrane calibration is essential for explaining the actual fraction of dissolved trace metals and verifying the integrity of ultrafiltration membrane. Overall, the results in this study provide a further understanding of the heterogeneity in biogeochemical features, migration and fate of toxic trace metals in aquatic ecosystems, especially that of the river-sea mixing zone. (C) 2019 Elsevier B.V. All rights reserved
Structural Evaluation for Distribution Networks with Distributed Generation Based on Complex Network
Structural analysis based on complex network theory has been considered promising for security issues of power grids. At the same time, modern power distribution networks with more Distributed Generations (DGs) and Energy Storage Systems (ESS) have taken on more challenges in operation and security issues. This paper proposed a dedicated metric named as Power-Supply-Ability for power distribution networks based on net-ability. Special features of DGs, such as relations of capacities, identification of effective supply area, and limitation in continuous power supply, have been considered in definition. Furthermore, a novel opinion is proposed that the extent of improvement for operation and security by adding DGs also depends on the original structure of the distribution networks. This is an inherent ability of the original networks and could be quantitatively analyzed. Through case studies, this method has been proved to be effective in identifying potential structural vulnerabilities of distribution networks; particularly the impact of DGs on security has been studied. Furthermore, it can help in site selection for DGs by providing different priorities of locations compared with results of other works. This can help to complement other methods to construct a more comprehensive methodology by considering aspects of security, economy, and quality
Hypomethylation of IL10 and IL13 Promoters in CD4+ T Cells of Patients with Systemic Lupus Erythematosus
Interleukin- (IL-)10 and IL-13 play important roles in Th2 cell differentiation and production of autoantibodies in patients with (SLE). However, the mechanisms leading to IL10 and IL13 overexpression in SLE patients are not well understood. In this study, we confirm that the levels of both IL10 and IL13 mRNA in CD4+ T cells and of serum IL10 and IL13 proteins are increased in SLE patients. We show that the DNA methylation levels within IL10 and IL13 gene regulatory domains are reduced in SLE CD4+ T cells relative to healthy controls and negatively correlate with IL10 and IL13 mRNA expression. Moreover, treating healthy CD4+ T cells with the demethylating agent 5-azacytidine (5-azaC) increased IL10 and IL13 mRNA transcription. Together, our results show that promoter methylation is a determinant of IL10 and IL13 expression in CD4+ T cells, and we propose that DNA hypomethylation leads to IL10 and IL13 overexpression in SLE patients
Detection of MMP activity in living cells by a genetically encoded surface-displayed FRET sensor
AbstractMatrix metalloproteinases (MMPs) are secretory endopeptidases. They have been associated with invasion by cancer-cell and metastasis. Previous studies have demonstrated that proteolytic activity could be detected using fluorescence resonance energy transfer (FRET) with mutants of GFP. To monitor MMP activity, we constructed vectors that encoded a MMP Substrate Site (MSS) between YFP and CFP. In vitro, YFP–MSS–CFP can be used to detect MMP activity and 1,10-phenathroline inhibition of MMP activity. In living cells, MMPs are secreted proteins and act outside of the cell, and therefore YFP–MSS–CFPdisplay was anchored on the cellular surface to detect extracellular MMP. A pDisplay-YC vector expressing the YFP–MSS–CFPdisplay on the cellular surface was transfected into MCF-7 cells that expressed low levels of MMP. Efficient transfer of energy from excited CFP to YFP within the YFP–MSS–CFPdisplay molecule was observed, and real-time FRET was declined when MCF-7 was incubated with MMP2. However, no such transfer of energy was detected in the YFP–MSS–CFPdisplay expressing MDA-MB 435s cells, in which high secretory MMP2 were expressed. The FRET sensor YFP–MSS–CFPdisplay can sensitively and reliably monitor MMP activation in living cells and can be used for high-throughput screening of MMP inhibitors for anti-cancer treatments
Dose-dependent inhibition of gastric injury by hydrogen in alkaline electrolyzed drinking water
BACKGROUND: Hydrogen has been reported to relieve damage in many disease models, and is a potential additive in drinking water to provide protective effects for patients as several clinical studies revealed. However, the absence of a dose–response relationship in the application of hydrogen is puzzling. We attempted to identify the dose–response relationship of hydrogen in alkaline electrolyzed drinking water through the aspirin induced gastric injury model. METHODS: In this study, hydrogen-rich alkaline water was obtained by adding H(2) to electrolyzed water at one atmosphere pressure. After 2 weeks of drinking, we detected the gastric mucosal damage together with MPO, MDA and 8-OHdG in rat aspirin induced gastric injury model. RESULTS: Hydrogen-dose dependent inhibition was observed in stomach mucosal. Under pH 8.5, 0.07, 0.22 and 0.84 ppm hydrogen exhibited a high correlation with inhibitory effects showed by erosion area, MPO activity and MDA content in the stomach. Gastric histology also demonstrated the inhibition of damage by hydrogen-rich alkaline water. However, 8-OHdG level in serum did not have significant hydrogen-dose dependent effect. pH 9.5 showed higher but not significant inhibitory response compared with pH 8.5. CONCLUSIONS: Hydrogen is effective in relieving the gastric injury induced by aspirin-HCl, and the inhibitory effect is dose-dependent. The reason behind this may be that hydrogen-rich water directly interacted with the target tissue, while the hydrogen concentration in blood was buffered by liver glycogen, evoking a suppressed dose–response effect. Drinking hydrogen-rich water may protect healthy individuals from gastric damage caused by oxidative stress
A Novel Bayesian Framework Infers Driver Activation States and Reveals Pathway-Oriented Molecular Subtypes in Head and Neck Cancer
Head and neck squamous cell cancer (HNSCC) is an aggressive cancer resulting from heterogeneous causes. To reveal the underlying drivers and signaling mechanisms of different HNSCC tumors, we developed a novel Bayesian framework to identify drivers of individual tumors and infer the states of driver proteins in cellular signaling system in HNSCC tumors. First, we systematically identify causal relationships between somatic genome alterations (SGAs) and differentially expressed genes (DEGs) for each TCGA HNSCC tumor using the tumor-specific causal inference (TCI) model. Then, we generalize the most statistically significant driver SGAs and their regulated DEGs in TCGA HNSCC cohort. Finally, we develop machine learning models that combine genomic and transcriptomic data to infer the protein functional activation states of driver SGAs in tumors, which enable us to represent a tumor in the space of cellular signaling systems. We discovered four mechanism-oriented subtypes of HNSCC, which show distinguished patterns of activation state of HNSCC driver proteins, and importantly, this subtyping is orthogonal to previously reported transcriptomic-based molecular subtyping of HNSCC. Further, our analysis revealed driver proteins that are likely involved in oncogenic processes induced by HPV infection, even though they are not perturbed by genomic alterations in HPV+ tumors
- …