4,940 research outputs found
Effective Actions for Massive Kaluza-Klein States on AdS_3 x S^3 x S^3
We construct the effective supergravity actions for the lowest massive
Kaluza-Klein states on the supersymmetric background AdS_3 x S^3 x S^3. In
particular, we describe the coupling of the supergravity multiplet to the
lowest massive spin-3/2 multiplet which contains 256 physical degrees of
freedom and includes the moduli of the theory. The effective theory is realized
as the broken phase of a particular gauging of the maximal three-dimensional
supergravity with gauge group SO(4) x SO(4). Its ground state breaks half of
the supersymmetries leading to 8 massive gravitinos acquiring mass in a super
Higgs effect. The holographic boundary theory realizes the large N=(4,4)
superconformal symmetry.Comment: 31 pages, v2: minor change
Static, non-SUSY -branes in diverse dimensions
We give explicit constructions of static, non-supersymmetric -brane (for
, where is the space-time dimensionality and including
or D-instanton) solutions of type II supergravities in diverse dimensions. A
subclass of these are the static counterpart of the time dependent solutions
obtained in [hep-th/0309202]. Depending on the forms of the non-extremality
function defined in the text, we discuss various possible solutions and
their region of validity. We show how one class of these solutions interpolate
between the -brane--anti -brane solutions and the usual BPS -brane
solutions in , while the other class, although have BPS limits, do not
have such an interpretation. We point out how the time dependent solutions
mentioned above can be obtained by a Wick rotation of one class of these static
solutions. We also discuss another type of solutions which might seem
non-supersymmetric, but we show by a coordinate transformation that they are
nothing but the near horizon limits of the various BPS -branes already
known.Comment: 29 pages, typos corrected, references adde
Counting approximately-shortest paths in directed acyclic graphs
Given a directed acyclic graph with positive edge-weights, two vertices s and
t, and a threshold-weight L, we present a fully-polynomial time
approximation-scheme for the problem of counting the s-t paths of length at
most L. We extend the algorithm for the case of two (or more) instances of the
same problem. That is, given two graphs that have the same vertices and edges
and differ only in edge-weights, and given two threshold-weights L_1 and L_2,
we show how to approximately count the s-t paths that have length at most L_1
in the first graph and length at most L_2 in the second graph. We believe that
our algorithms should find application in counting approximate solutions of
related optimization problems, where finding an (optimum) solution can be
reduced to the computation of a shortest path in a purpose-built auxiliary
graph
Generalized Conformal Quantum Mechanics of D0-brane
We study the generalized conformal quantum mechanics of the probe D0-brane in
the near horizon background of the bound state of source D0-branes. We
elaborate on the relationship of such model to the M theory in the light cone
frame.Comment: 14 pages, RevTeX, revised version with added references to appear in
Phys. Rev.
Large Bi-2212 single crystal growth by the floating-zone technique
Effects of the growth velocity on the crystal growth behavior of
Bi_2Sr_2Ca_1Cu_2O_x (Bi-2212) have been studied by floating zone technique. The
results show that a necessary condition for obtaining large single crystals
along the c-axis is that the solid-liquid interface of a growing rod maintains
a stable planar growth front. The planar liquid-solid growth interface tends to
break down into a cellular interface, while the growth velocity is higher than
0.25 mm/h. Single crystals of up to 50x7.2x7 mm3 along the a-, b- and caxes
have been cut in a 7.2 mm diameter rod with optimum growth conditions. Tconset
is 91 K measured by magnetic properties measurement system (MPMS) for as-grown
crystals. Optical polarization microscope and neutron diffraction show that the
quality of the single crystals is good.Comment: 5 pages, 4 figure
Using Markov Models and Statistics to Learn, Extract, Fuse, and Detect Patterns in Raw Data
Many systems are partially stochastic in nature. We have derived data driven
approaches for extracting stochastic state machines (Markov models) directly
from observed data. This chapter provides an overview of our approach with
numerous practical applications. We have used this approach for inferring
shipping patterns, exploiting computer system side-channel information, and
detecting botnet activities. For contrast, we include a related data-driven
statistical inferencing approach that detects and localizes radiation sources.Comment: Accepted by 2017 International Symposium on Sensor Networks, Systems
and Securit
Feedback methods for inverse simulation of dynamic models for engineering systems applications
Inverse simulation is a form of inverse modelling in which computer simulation methods are used to find the time histories of input variables that, for a given model, match a set of required output responses. Conventional inverse simulation methods for dynamic models are computationally intensive and can present difficulties for high-speed
applications. This paper includes a review of established methods of inverse simulation,giving some emphasis to iterative techniques that were first developed for aeronautical applications. It goes on to discuss the application of a different approach which is based on feedback principles. This feedback method is suitable for a wide range of linear and nonlinear dynamic models and involves two distinct stages. The first stage involves
design of a feedback loop around the given simulation model and, in the second stage, that closed-loop system is used for inversion of the model. Issues of robustness within
closed-loop systems used in inverse simulation are not significant as there are no plant uncertainties or external disturbances. Thus the process is simpler than that required for the development of a control system of equivalent complexity. Engineering applications
of this feedback approach to inverse simulation are described through case studies that put particular emphasis on nonlinear and multi-input multi-output models
The Chromatin Remodeler BPTF Activates a Stemness Gene-Expression Program Essential for the Maintenance of Adult Hematopoietic Stem Cells
Self-renewal and differentiation of adult stem cells are tightly regulated partly through configuration of chromatin structure by chromatin remodelers. Using knockout mice, we here demonstrate that bromodomain PHD finger transcription factor (BPTF), a component of the nucleosome remodeling factor (NURF) chromatin-remodeling complex, is essential for maintaining the population size of hematopoietic stem/progenitor cells (HSPCs), including long-term hematopoietic stem cells (HSCs). Bptf-deficient HSCs are defective in reconstituted hematopoiesis, and hematopoietic-specific knockout of Bptf caused profound defects including bone marrow failure and anemia. Genome-wide transcriptome profiling revealed that BPTF loss caused downregulation of HSC-specific gene-expression programs, which contain several master transcription factors (Meis1, Pbx1, Mn1, and Lmo2) required for HSC maintenance and self-renewal. Furthermore, we show that BPTF potentiates the chromatin accessibility of key HSC “stemness” genes. These results demonstrate an essential requirement of the chromatin remodeler BPTF and NURF for activation of “stemness” gene-expression programs and proper function of adult HSCs. Wang and colleagues show that a chromatin remodeler, BPTF, sustains appropriate functions of hematopoietic stem/progenitor cells (HSPCs). BPTF loss causes bone marrow failure and anemia. The authors further define a BPTF-dependent gene-expression program in HSPCs, which contains key HSC stemness factors. These results demonstrate an essential requirement of the BPTF-associated chromatin remodelers for HSC functionality and adult hematopoiesis
Incipient Separation in Shock Wave Boundary Layer Interactions as Induced by Sharp Fin
The incipient separation induced by the shock wave turbulent boundary layer
interaction at the sharp fin is the subject of present study. Existing theories
for the prediction of incipient separation, such as those put forward by McCabe
(1966) and Dou and Deng (1992), can have thus far only predicting the direction
of surface streamline and tend to over-predict the incipient separation
condition based on the Stanbrook's criterion. In this paper, the incipient
separation is firstly predicted with Dou and Deng (1992)'s theory and then
compared with Lu and Settles (1990)' experimental data. The physical mechanism
of the incipient separation as induced by the shock wave/turbulent boundary
layer interactions at sharp fin is explained via the surface flow pattern
analysis. Furthermore, the reason for the observed discrepancy between the
predicted and experimental incipient separation conditions is clarified. It is
found that when the wall limiting streamlines behind the shock wave becomes\
aligning with one ray from the virtual origin as the strength of shock wave
increases, the incipient separation line is formed at which the wall limiting
streamline becomes perpendicular to the local pressure gradient. The formation
of this incipient separation line is the beginning of the separation process.
The effects of Reynolds number and the Mach number on incipient separation are
also discussed. Finally, a correlation for the correction of the incipient
separation angle as predicted by the theory is also given.Comment: 34 pages; 9 figure
The Octonionic Membrane
We generalize the supermembrane solution of D=11 supergravity by permitting
the 4-form to be either self-dual or anti-self-dual in the eight dimensions
transverse to the membrane. After analyzing the supergravity field equations
directly, and also discussing necessary conditions for unbroken supersymmetry,
we focus on two specific, related solutions. The self-dual solution is not
asymptotically flat. The anti-self-dual solution is asymptotically flat, has
finite mass per unit area and saturates the same mass=charge Bogomolnyi bound
as the usual supermembrane. Nevertheless, neither solution preserves any
supersymmetry. Both solutions involve the octonionic structure constants but,
perhaps surprisingly, they are unrelated to the octonionic instanton 2-form
, for which is neither self-dual nor anti-self-dual.Comment: 17 pages, Latex; enhanced discussion on supersymmetry, some
references adde
- …