52 research outputs found

    Nearly Optimal Linear Convergence of Stochastic Primal-Dual Methods for Linear Programming

    Full text link
    There is a recent interest on first-order methods for linear programming (LP). In this paper,we propose a stochastic algorithm using variance reduction and restarts for solving sharp primal-dual problems such as LP. We show that the proposed stochastic method exhibits a linear convergence rate for solving sharp instances with a high probability. In addition, we propose an efficient coordinate-based stochastic oracle for unconstrained bilinear problems, which has O(1)\mathcal O(1) per iteration cost and improves the complexity of the existing deterministic and stochastic algorithms. Finally, we show that the obtained linear convergence rate is nearly optimal (upto log⁑\log terms) for a wide class of stochastic primal dual methods

    On the Infimal Sub-differential Size of Primal-Dual Hybrid Gradient Method and Beyond

    Full text link
    Primal-dual hybrid gradient method (PDHG, a.k.a. Chambolle and Pock method) is a well-studied algorithm for minimax optimization problems with a bilinear interaction term. Recently, PDHG is used as the base algorithm for a new LP solver PDLP that aims to solve large LP instances by taking advantage of modern computing resources, such as GPU and distributed system. Most of the previous convergence results of PDHG are either on duality gap or on distance to the optimal solution set, which are usually hard to compute during the solving process. In this paper, we propose a new progress metric for analyzing PDHG, which we dub infimal sub-differential size (IDS), by utilizing the geometry of PDHG iterates. IDS is a natural extension of the gradient norm of smooth problems to non-smooth problems, and it is tied with KKT error in the case of LP. Compared to traditional progress metrics for PDHG, IDS always has a finite value and can be computed only using information of the current solution. We show that IDS monotonically decays, and it has an O(1k)\mathcal O(\frac{1}{k}) sublinear rate for solving convex-concave primal-dual problems, and it has a linear convergence rate if the problem further satisfies a regularity condition that is satisfied by applications such as linear programming, quadratic programming, TV-denoising model, etc. The simplicity of our analysis and the monotonic decay of IDS suggest that IDS is a natural progress metric to analyze PDHG. As a by-product of our analysis, we show that the primal-dual gap has O(1k)\mathcal O(\frac{1}{\sqrt{k}}) convergence rate for the last iteration of PDHG for convex-concave problems. The analysis and results on PDHG can be directly generalized to other primal-dual algorithms, for example, proximal point method (PPM), alternating direction method of multipliers (ADMM) and linearized alternating direction method of multipliers (l-ADMM)

    On the Geometry and Refined Rate of Primal-Dual Hybrid Gradient for Linear Programming

    Full text link
    We study the convergence behaviors of primal-dual hybrid gradient (PDHG) for solving linear programming (LP). PDHG is the base algorithm of a new general-purpose first-order method LP solver, PDLP, which aims to scale up LP by taking advantage of modern computing architectures. Despite its numerical success, the theoretical understanding of PDHG for LP is still very limited; the previous complexity result relies on the global Hoffman constant of the KKT system, which is known to be very loose and uninformative. In this work, we aim to develop a fundamental understanding of the convergence behaviors of PDHG for LP and to develop a refined complexity rate that does not rely on the global Hoffman constant. We show that there are two major stages of PDHG for LP: in Stage I, PDHG identifies active variables and the length of the first stage is driven by a certain quantity which measures how close the non-degeneracy part of the LP instance is to degeneracy; in Stage II, PDHG effectively solves a homogeneous linear inequality system, and the complexity of the second stage is driven by a well-behaved local sharpness constant of the system. This finding is closely related to the concept of partial smoothness in non-smooth optimization, and it is the first complexity result of finite time identification without the non-degeneracy assumption. An interesting implication of our results is that degeneracy itself does not slow down the convergence of PDHG for LP, but near-degeneracy does

    A Practical and Optimal First-Order Method for Large-Scale Convex Quadratic Programming

    Full text link
    Convex quadratic programming (QP) is an important class of optimization problem with wide applications in practice. The classic QP solvers are based on either simplex or barrier method, both of which suffer from the scalability issue because their computational bottleneck is solving linear equations. In this paper, we design and analyze a first-order method called the restarted accelerated primal-dual hybrid gradient method for QP, whose computational bottleneck is matrix-vector multiplication. We show that the proposed algorithm has a linear convergence rate when solving generic QP, and the obtained linear rate is optimal among a wide class of primal-dual methods. Furthermore, we connect the linear rate with a sharpness constant of the KKT system of QP, which is a standard quantity to measure the hardness of a continuous optimization problem. Numerical experiments on a standard QP benchmark set showcase the advantage of the proposed algorithm compared to its first-order counterparts
    • …
    corecore