9 research outputs found

    Immobilization of Cr(VI) in Soil Using a Montmorillonite-Supported Carboxymethyl Cellulose-Stabilized Iron Sulfide Composite: Effectiveness and Biotoxicity Assessment

    No full text
    A novel composite of montmorillonite-supported carboxymethyl cellulose-stabilized nanoscale iron sulfide (CMC@MMT-FeS), prepared using the co-precipitation method, was applied to remediate hexavalent chromium (Cr(VI))-contaminated soil. Cr(VI)-removal capacity increased with increasing FeS-particle loading. We tested the efficacy of CMC@MMT-FeS at three concentrations of FeS: 0.2, 0.5, and 1 mmol/g, hereafter referred to as 0.2 CMC@MMT-FeS, 0.5 CMC@MMT-FeS, and 1.0 CMC@MMT-FeS, respectively. The soil Cr(VI) concentration decreased by 90.7% (from an initial concentration of 424.6 to 39.4 mg/kg) after 30 days, following addition of 5% (composite–soil mass proportion) 1.0 CMC@MMT-FeS. When 2% 0.5 CMC@MMT-FeS was added to Cr(VI)-contaminated soil, the Cr(VI) removal efficiency, as measured in the leaching solution using the toxicity characteristic leaching procedure, was 90.3%, meeting the environmental protection standard for hazardous waste (5 mg/kg). The European Community Bureau of Reference (BCR) test confirmed that the main Cr fractions in the soil samples changed from acid-exchangeable fractions to oxidable fractions and residual fractions after 30 days of soil remediation by the composite. Moreover, the main complex formed during remediation was Fe(III)–Cr(III), based on BCR and X-ray photoelectron spectroscopy analyses. Biotoxicity of the remediated soils, using Vicia faba and Eisenia foetida, was analyzed and evaluated. Our results indicate that CMC@MMT-FeS effectively immobilizes Cr(VI), with widespread potential application in Cr(VI)-contaminated soil remediation

    Community Integrated Earth System Model (CIESM): Description and Evaluation

    No full text
    Abstract A team effort to develop a Community Integrated Earth System Model (CIESM) was initiated in China in 2012. The model was based on NCAR Community Earth System Model (Version 1.2.1) with several novel developments and modifications aimed to overcome some persistent systematic biases, such as the double Intertropical Convergence Zone problem and underestimated marine boundary layer clouds. Aerosols' direct and indirect effects are prescribed using the MACv2‐SP approach and data sets. The spin‐up of a 500‐year preindustrial simulation and three historical simulations are described and evaluated. Prominent improvements include alleviated double Intertropical Convergence Zone problem, increased marine boundary layer clouds, and better El Niño Southern Oscillation amplitude and periods. One deficiency of the model is the significantly underestimated Arctic and Antarctic sea ice in warm seasons. The historical warming is about 0.55 °C greater than observations toward 2014. CIESM has an equilibrium climate sensitivity of 5.67 K, mainly resulted from increased positive shortwave cloud feedback. Our efforts on porting and redesigning CIESM for the heterogeneous Sunway TaihuLight supercomputer are also introduced, including some ongoing developments toward a future version of the model
    corecore