1,474 research outputs found

    Learning from Multi-View Multi-Way Data via Structural Factorization Machines

    Full text link
    Real-world relations among entities can often be observed and determined by different perspectives/views. For example, the decision made by a user on whether to adopt an item relies on multiple aspects such as the contextual information of the decision, the item's attributes, the user's profile and the reviews given by other users. Different views may exhibit multi-way interactions among entities and provide complementary information. In this paper, we introduce a multi-tensor-based approach that can preserve the underlying structure of multi-view data in a generic predictive model. Specifically, we propose structural factorization machines (SFMs) that learn the common latent spaces shared by multi-view tensors and automatically adjust the importance of each view in the predictive model. Furthermore, the complexity of SFMs is linear in the number of parameters, which make SFMs suitable to large-scale problems. Extensive experiments on real-world datasets demonstrate that the proposed SFMs outperform several state-of-the-art methods in terms of prediction accuracy and computational cost.Comment: 10 page

    Online Unsupervised Multi-view Feature Selection

    Full text link
    In the era of big data, it is becoming common to have data with multiple modalities or coming from multiple sources, known as "multi-view data". Multi-view data are usually unlabeled and come from high-dimensional spaces (such as language vocabularies), unsupervised multi-view feature selection is crucial to many applications. However, it is nontrivial due to the following challenges. First, there are too many instances or the feature dimensionality is too large. Thus, the data may not fit in memory. How to select useful features with limited memory space? Second, how to select features from streaming data and handles the concept drift? Third, how to leverage the consistent and complementary information from different views to improve the feature selection in the situation when the data are too big or come in as streams? To the best of our knowledge, none of the previous works can solve all the challenges simultaneously. In this paper, we propose an Online unsupervised Multi-View Feature Selection, OMVFS, which deals with large-scale/streaming multi-view data in an online fashion. OMVFS embeds unsupervised feature selection into a clustering algorithm via NMF with sparse learning. It further incorporates the graph regularization to preserve the local structure information and help select discriminative features. Instead of storing all the historical data, OMVFS processes the multi-view data chunk by chunk and aggregates all the necessary information into several small matrices. By using the buffering technique, the proposed OMVFS can reduce the computational and storage cost while taking advantage of the structure information. Furthermore, OMVFS can capture the concept drifts in the data streams. Extensive experiments on four real-world datasets show the effectiveness and efficiency of the proposed OMVFS method. More importantly, OMVFS is about 100 times faster than the off-line methods

    Multi-view Graph Embedding with Hub Detection for Brain Network Analysis

    Full text link
    Multi-view graph embedding has become a widely studied problem in the area of graph learning. Most of the existing works on multi-view graph embedding aim to find a shared common node embedding across all the views of the graph by combining the different views in a specific way. Hub detection, as another essential topic in graph mining has also drawn extensive attentions in recent years, especially in the context of brain network analysis. Both the graph embedding and hub detection relate to the node clustering structure of graphs. The multi-view graph embedding usually implies the node clustering structure of the graph based on the multiple views, while the hubs are the boundary-spanning nodes across different node clusters in the graph and thus may potentially influence the clustering structure of the graph. However, none of the existing works in multi-view graph embedding considered the hubs when learning the multi-view embeddings. In this paper, we propose to incorporate the hub detection task into the multi-view graph embedding framework so that the two tasks could benefit each other. Specifically, we propose an auto-weighted framework of Multi-view Graph Embedding with Hub Detection (MVGE-HD) for brain network analysis. The MVGE-HD framework learns a unified graph embedding across all the views while reducing the potential influence of the hubs on blurring the boundaries between node clusters in the graph, thus leading to a clear and discriminative node clustering structure for the graph. We apply MVGE-HD on two real multi-view brain network datasets (i.e., HIV and Bipolar). The experimental results demonstrate the superior performance of the proposed framework in brain network analysis for clinical investigation and application

    Spectral Collaborative Filtering

    Full text link
    Despite the popularity of Collaborative Filtering (CF), CF-based methods are haunted by the \textit{cold-start} problem, which has a significantly negative impact on users' experiences with Recommender Systems (RS). In this paper, to overcome the aforementioned drawback, we first formulate the relationships between users and items as a bipartite graph. Then, we propose a new spectral convolution operation directly performing in the \textit{spectral domain}, where not only the proximity information of a graph but also the connectivity information hidden in the graph are revealed. With the proposed spectral convolution operation, we build a deep recommendation model called Spectral Collaborative Filtering (SpectralCF). Benefiting from the rich information of connectivity existing in the \textit{spectral domain}, SpectralCF is capable of discovering deep connections between users and items and therefore, alleviates the \textit{cold-start} problem for CF. To the best of our knowledge, SpectralCF is the first CF-based method directly learning from the \textit{spectral domains} of user-item bipartite graphs. We apply our method on several standard datasets. It is shown that SpectralCF significantly outperforms state-of-the-art models. Code and data are available at \url{https://github.com/lzheng21/SpectralCF}.Comment: RecSys201

    Non-Intrusive Adaptation: Input-Centric Parameter-efficient Fine-Tuning for Versatile Multimodal Modeling

    Full text link
    Large language models (LLMs) and vision language models (VLMs) demonstrate excellent performance on a wide range of tasks by scaling up parameter counts from O(10^9) to O(10^{12}) levels and further beyond. These large scales make it impossible to adapt and deploy fully specialized models given a task of interest. Parameter-efficient fine-tuning (PEFT) emerges as a promising direction to tackle the adaptation and serving challenges for such large models. We categorize PEFT techniques into two types: intrusive and non-intrusive. Intrusive PEFT techniques directly change a model's internal architecture. Though more flexible, they introduce significant complexities for training and serving. Non-intrusive PEFT techniques leave the internal architecture unchanged and only adapt model-external parameters, such as embeddings for input. In this work, we describe AdaLink as a non-intrusive PEFT technique that achieves competitive performance compared to SoTA intrusive PEFT (LoRA) and full model fine-tuning (FT) on various tasks. We evaluate using both text-only and multimodal tasks, with experiments that account for both parameter-count scaling and training regime (with and without instruction tuning)
    corecore