109 research outputs found

    From matchings to independent sets

    Get PDF
    In 1965, Jack Edmonds proposed his celebrated polynomial-time algorithm to find a maximum matching in a graph. It is well-known that finding a maximum matching in G is equivalent to finding a maximum independent set in the line graph of G. For general graphs, the maximum independent set problem is NP-hard. What makes this problem easy in the class of line graphs and what other restrictions can lead to an efficient solution of the problem? In the present paper, we analyze these and related questions. We also review various techniques that may lead to efficient algorithms for the maximum independent set problem in restricted graph families, with a focus given to augmenting graphs and graph transformations. Both techniques have been used in the solution of Edmonds to the maximum matching problem, i.e. in the solution to the maximum independent set problem in the class of line graphs. We survey various results that exploit these techniques beyond the line graphs

    Independent sets of maximum weight in apple-free graphs

    Get PDF
    We present the first polynomial-time algorithm to solve the maximum weight independent set problem for apple-free graphs, which is a common generalization of several important classes where the problem can be solved efficiently, such as claw-free graphs, chordal graphs, and cographs. Our solution is based on a combination of two algorithmic techniques (modular decomposition and decomposition by clique separators) and a deep combinatorial analysis of the structure of apple-free graphs. Our algorithm is robust in the sense that it does not require the input graph G to be apple-free; the algorithm either finds an independent set of maximum weight in G or reports that G is not apple-free

    Universal graphs and universal permutations

    Full text link
    Let XX be a family of graphs and XnX_n the set of nn-vertex graphs in XX. A graph U(n)U^{(n)} containing all graphs from XnX_n as induced subgraphs is called nn-universal for XX. Moreover, we say that U(n)U^{(n)} is a proper nn-universal graph for XX if it belongs to XX. In the present paper, we construct a proper nn-universal graph for the class of split permutation graphs. Our solution includes two ingredients: a proper universal 321-avoiding permutation and a bijection between 321-avoiding permutations and symmetric split permutation graphs. The nn-universal split permutation graph constructed in this paper has 4n34n^3 vertices, which means that this construction is order-optimal.Comment: To appear in Discrete Mathematics, Algorithms and Application

    Ramsey numbers and graph parameters

    Get PDF
    According to Ramsey’s Theorem, for any natural p and q there is a minimum number R(p, q) such that every graph with at least R(p, q) vertices has either a clique of size p or an independent set of size q. In the present paper, we study Ramsey numbers R(p, q) for graphs in special classes. It is known that for graphs of bounded co-chromatic number Ramsey numbers are upper-bounded by a linear function of p and q. However, the exact values of R(p, q) are known only for classes of graphs of co-chromatic number at most 2. In this paper, we determine the exact values of Ramsey numbers for classes of graphs of co-chromatic number at most 3. It is also known that for classes of graphs of unbounded splitness the value of R(p, q) is lower-bounded by (p-1)(q-1)+1. This lower bound coincides with the upper bound for perfect graphs and for all their subclasses of unbounded splitness. We call a class Ramsey-perfect if there is a constant c such that R(p, q)=(p-1)(q-1)+1 for all p, q≥c in this class. In the present paper, we identify a number of Ramsey-perfect classes which are not subclasses of perfect graphs

    Graphs without large bicliques and well-quasi-orderability by the induced subgraph relation

    Get PDF
    Recently, Daligault, Rao and Thomass\'e asked in [3] if every hereditary class which is well-quasi-ordered by the induced subgraph relation is of bounded clique-width. There are two reasons why this questions is interesting. First, it connects two seemingly unrelated notions. Second, if the question is answered affirmatively, this will have a strong algorithmic consequence. In particular, this will mean (through the use of Courcelle theorem [2]), that any problem definable in Monadic Second Order Logic can be solved in a polynomial time on any class well-quasi-ordered by the induced subgraph relation. In the present paper, we answer this question affirmatively for graphs without large bicliques. Thus the above algorithmic consequence is true, for example, for classes of graphs of bounded degree

    Union-closed sets and Horn Boolean functions

    Get PDF
    A family of sets is union-closed if the union of any two sets from belongs to. The union-closed sets conjecture states that if is a finite union-closed family of finite sets, then there is an element that belongs to at least half of the sets in. The conjecture has several equivalent formulations in terms of other combinatorial structures such as lattices and graphs. In its whole generality the conjecture remains wide open, but it was verified for various important classes of lattices, such as lower semimodular lattices, and graphs, such as chordal bipartite graphs. In the present paper we develop a Boolean approach to the conjecture and verify it for several classes of Boolean functions, such as submodular functions and double Horn functions

    Critical properties and complexity measures of read-once Boolean functions

    Get PDF
    In this paper, we define a quasi-order on the set of read-once Boolean functions and show that this is a well-quasi-order. This implies that every parameter measuring complexity of the functions can be characterized by a finite set of minimal subclasses of read-once functions, where this parameter is unbounded. We focus on two parameters related to certificate complexity and characterize each of them in the terminology of minimal classes

    Perfect edge domination : hard and solvable cases

    Get PDF
    Let G be an undirected graph. An edge of Gdominates itself and all edges adjacent to it. A subset E′ of edges of G is an edge dominating set of G, if every edge of the graph is dominated by some edge of E′. We say that E′ is a perfect edge dominating set of G, if every edge not in E′ is dominated by exactly one edge of E′. The perfect edge dominating problem is to determine a least cardinality perfect edge dominating set of G. For this problem, we describe two NP-completeness proofs, for the classes of claw-free graphs of degree at most 3, and for bounded degree graphs, of maximum degree at most d≥ 3 and large girth. In contrast, we prove that the problem admits an O(n) time solution, for cubic claw-free graphs. In addition, we prove a complexity dichotomy theorem for the perfect edge domination problem, based on the results described in the paper. Finally, we describe a linear time algorithm for finding a minimum weight perfect edge dominating set of a P5-free graph. The algorithm is robust, in the sense that, given an arbitrary graph G, either it computes a minimum weight perfect edge dominating set of G, or it exhibits an induced subgraph of G, isomorphic to a P5.Fil: Lin, Min Chih. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; ArgentinaFil: Lozin, Vadim. University of Warwick; Reino UnidoFil: Moyano, Verónica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; ArgentinaFil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; Brasil. Instituto Nacional de Metrologia, Qualidade e Tecnologia; Brasi
    corecore