406 research outputs found
On plane wave and vortex-like solutions of noncommutative Maxwell-Chern-Simons theory
We investigate the spectrum of the gauge theory with Chern-Simons term on the
noncommutative plane, a modification of the description of the Quantum Hall
fluid recently proposed by Susskind. We find a series of the noncommutative
massive ``plane wave'' solutions with polarization dependent on the magnitude
of the wave-vector. The mass of each branch is fixed by the quantization
condition imposed on the coefficient of the noncommutative Chern-Simons term.
For the radially symmetric ansatz a vortex-like solution is found and
investigated. We derive a nonlinear difference equation describing these
solutions and we find their asymptotic form. These excitations should be
relevant in describing the Quantum Hall transitions between plateaus and the
end transition to the Hall Insulator.Comment: 17 pages, LaTeX (JHEP), 1 figure, added references, version accepted
to JHE
Non BPS noncommutative vortices
We construct exact vortex solutions to the equations of motion of the Abelian
Higgs model defined in non commutative space, analyzing in detail the
properties of these solutions beyond the BPS point. We show that our solutions
behave as smooth deformations of vortices in ordinary space time except for
parity symmetry breaking effects induced by the non commutative parameter
.Comment: 17 pages, 5 figure
Time dependent solitons of noncommutative Chern-Simons theory coupled to scalar fields
We study one- and two-soliton solutions of noncommutative Chern-Simons theory
coupled to a nonrelativistic or a relativistic scalar field. In the
nonrelativistic case, we find a tower of new stationary time-dependent
solutions, all with the same charge density, but with increasing energies. The
dynamics of these solitons cannot be studied using traditional moduli space
techniques, but we do find a nontrivial symplectic form on the phase space
indicating that the moduli space is not flat. In the relativistic case we find
the metric on the two soliton moduli space.Comment: 22 pages, 2 figures, JHEP3 style. v2: This paper is a thoroughly
revised version. We thank P.A. Horvathy, L. Martina and P.C. Stichel for
illuminating comments that led us to reconsider some of our previously
reported results; see note added at the end of the paper. v3:
Acknowledgements adde
A Vector Non-abelian Chern-Simons Duality
Abelian Chern-Simons gauge theory is known to possess a `-self-dual'
action where its coupling constant is inverted {\it i.e.} . Here a vector non-abelian duality is found in the
pure non-abelian Chern-Simons action at the classical level. The dimensional
reduction of the dual Chern-Simons action to two-dimensions constitutes a dual
Wess-Zumino-Witten action already given in the literature.Comment: 14+1 pages, LaTeX file, no figures, version to appear in Phys. Rev
ICOS costimulation at the tumor site in combination with CTLA-4 blockade therapy elicits strong tumor immunity
Cytotoxic T lymphocyte-associated protein 4 (CTLA-4) blockade therapy is able to induce long-lasting antitumor responses in a fraction of cancer patients. Nonetheless, there is still room for improvement in the quest for new therapeutic combinations. ICOS costimulation has been underscored as a possible target to include with CTLA-4 blocking treatment. Herein, we describe an ICOS agonistic aptamer that potentiates T cell activation and induces stronger antitumor responses when locally injected at the tumor site in combination with anti-CTLA-4 antibody in different tumor models. Furthermore, ICOS agonistic aptamer was engineered as a bi-specific tumor-targeting aptamer to reach any disseminated tumor lesions after systemic injection. Treatment with the bi-specific aptamer in combination with CTLA-4 blockade showed strong antitumor immunity, even in a melanoma tumor model where CTLA-4 treatment alone did not display any significant therapeutic benefit. Thus, this work provides strong support for the development of combinatorial therapies involving anti-CTLA-4 blockade and ICOS agonist tumor-targeting agents
Vortices, Instantons and Branes
The purpose of this paper is to describe a relationship between the moduli
space of vortices and the moduli space of instantons. We study charge k
vortices in U(N) Yang-Mills-Higgs theories and show that the moduli space is
isomorphic to a special Lagrangian submanifold of the moduli space of k
instantons in non-commutative U(N) Yang-Mills theories. This submanifold is the
fixed point set of a U(1) action on the instanton moduli space which rotates
the instantons in a plane. To derive this relationship, we present a D-brane
construction in which the dynamics of vortices is described by the Higgs branch
of a U(k) gauge theory with 4 supercharges which is a truncation of the
familiar ADHM gauge theory. We further describe a moduli space construction for
semi-local vortices, lumps in the CP(N) and Grassmannian sigma-models, and
vortices on the non-commutative plane. We argue that this relationship between
vortices and instantons underlies many of the quantitative similarities shared
by quantum field theories in two and four dimensions.Comment: 32 Pages, 4 Figure
Mass spectra of doubly heavy Omega_QQ' baryons
We evaluate the masses of baryons composed of two heavy quarks and a strange
quark with account for spin-dependent splittings in the framework of potential
model with the KKO potential motivated by QCD with a three-loop beta-function
for the effective charge consistent with both the perturbative limit at short
distances and linear confinement term at long distances between the quarks. The
factorization of dynamics is supposed and explored in the nonrelativistic
Schroedinger equation for the motion in the system of two heavy quarks
constituting the doubly heavy diquark and the strange quark interaction with
the diquark. The limits of approach, its justification and uncertainties are
discussed. Excited quasistable states are classified by the quantum numbers of
heavy diquark composed by the heavy quarks of the same flavor.Comment: 14 pages, revtex4-file, 3 eps-figures, 5 tables, typos correcte
On S-duality in (2+1)-Chern-Simons Supergravity
Strong/weak coupling duality in Chern-Simons supergravity is studied. It is
argued that this duality can be regarded as an example of superduality. The use
of supergroup techniques for the description of Chern-Simons supergravity
greatly facilitates the analysis.Comment: 10+1 pages, latex, no figure
The exposure of the hybrid detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays.
It consists of a surface array to measure secondary particles at ground level
and a fluorescence detector to measure the development of air showers in the
atmosphere above the array. The "hybrid" detection mode combines the
information from the two subsystems. We describe the determination of the
hybrid exposure for events observed by the fluorescence telescopes in
coincidence with at least one water-Cherenkov detector of the surface array. A
detailed knowledge of the time dependence of the detection operations is
crucial for an accurate evaluation of the exposure. We discuss the relevance of
monitoring data collected during operations, such as the status of the
fluorescence detector, background light and atmospheric conditions, that are
used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment
This paper describes an analysis of the angular distribution of W->enu and
W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with
the ATLAS detector at the LHC in 2010, corresponding to an integrated
luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and
the missing transverse energy, the W decay angular distribution projected onto
the transverse plane is obtained and analysed in terms of helicity fractions
f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV
and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw
> 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour,
are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017
+/- 0.030, where the first uncertainties are statistical, and the second
include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables,
revised author list, matches European Journal of Physics C versio
- âŠ