2 research outputs found

    5to. Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad. Memoria académica

    Get PDF
    El V Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad, CITIS 2019, realizado del 6 al 8 de febrero de 2019 y organizado por la Universidad Politécnica Salesiana, ofreció a la comunidad académica nacional e internacional una plataforma de comunicación unificada, dirigida a cubrir los problemas teóricos y prácticos de mayor impacto en la sociedad moderna desde la ingeniería. En esta edición, dedicada a los 25 años de vida de la UPS, los ejes temáticos estuvieron relacionados con la aplicación de la ciencia, el desarrollo tecnológico y la innovación en cinco pilares fundamentales de nuestra sociedad: la industria, la movilidad, la sostenibilidad ambiental, la información y las telecomunicaciones. El comité científico estuvo conformado formado por 48 investigadores procedentes de diez países: España, Reino Unido, Italia, Bélgica, México, Venezuela, Colombia, Brasil, Estados Unidos y Ecuador. Fueron recibidas un centenar de contribuciones, de las cuales 39 fueron aprobadas en forma de ponencias y 15 en formato poster. Estas contribuciones fueron presentadas de forma oral ante toda la comunidad académica que se dio cita en el Congreso, quienes desde el aula magna, el auditorio y la sala de usos múltiples de la Universidad Politécnica Salesiana, cumplieron respetuosamente la responsabilidad de representar a toda la sociedad en la revisión, aceptación y validación del conocimiento nuevo que fue presentado en cada exposición por los investigadores. Paralelo a las sesiones técnicas, el Congreso contó con espacios de presentación de posters científicos y cinco workshops en temáticas de vanguardia que cautivaron la atención de nuestros docentes y estudiantes. También en el marco del evento se impartieron un total de ocho conferencias magistrales en temas tan actuales como la gestión del conocimiento en la universidad-ecosistema, los retos y oportunidades de la industria 4.0, los avances de la investigación básica y aplicada en mecatrónica para el estudio de robots de nueva generación, la optimización en ingeniería con técnicas multi-objetivo, el desarrollo de las redes avanzadas en Latinoamérica y los mundos, la contaminación del aire debido al tránsito vehicular, el radón y los riesgos que representa este gas radiactivo para la salud humana, entre otros

    Sur les modèles flous adaptatifs dynamiques

    No full text
    La contribution principale de ce travail de recherche est la proposition d'un modèle flou avec des fonctions d'appartenance dynamiques à paramètres ajustables en ligne, par un algorithme basé sur l'Apprentissage par Renforcement (AR). L'approche présentée prend en compte la dynamique des variables du système en introduisant, dans les fonctions d'appartenance d'un modèle flou, la valeur moyenne et la variance des variables d'entrée et de sortie du modèle au temps t. De cette manière, les ensembles flous se déplacent sur le domaine de discours des variables, en fonction des valeurs de la moyenne et de la variance échantillonnées ;ainsi, la possibilité d'obtenir des ensembles flous disjoints peut être minimisée. La propriété dynamique du modèle flou proposé est un atout pour résoudre les problèmes de commande de systèmes variant avec le temps, par exemple. Des exemples d'identification de fonctions non-linéaires, variant avec le temps, illustrent la capacité du modèle flou adaptatif dynamique pour l'identification des systèmes. Une application à la commande prédictive a été développée, en utilisant le modèle flou proposé comme modèle de prédiction et l'AR pour résoudre le problème d'optimisation de ce type de schéma de commande. Finalement, l'utilisation de l'information contenue dans les fonctions d'appartenance dynamiques du modèle flou à des niveaux supérieurs de supervision et diagnostic, a été aussi discutée comme perspective intéressante d'application de ce type de modèles.This work deals with the proposition of an adaptive fuzzy model with dynamical membership functions. The identification of the parameters of these membership functions is performed by a on-line reinforcement learning-based algorithm. This approach takes into account the system variables dynamic by incorporating the mean value and the variance, at time t, of the input and output variables of the fuzzy model into its membership functions.By this way, the fuzzy sets associated to the fuzzy variables, are relocated on the domain of discourse according to the sampled mean and variance values; thus, a disjointed partition of the fuzzy sets of the fuzzy model could be avoid. The dynamical property of the proposed fuzzy models is an asset in fuzzy control problems in case of time-varying nonlinear systems, for example. Classical examples related to the identification of time-varying nonlinear functions show the capabilities of the dynamical fuzzy models. An application to predictive control has been developed using the fuzzy model as one step ahead predictor and the reinforcement learning in the optimization problem of this type of control scheme. Finally, a discussion about the use of the information provided by the dynamical membership functions is presented in order to accomplish diagnosis and supervision tasks at upper levels.TOULOUSE-INSA (315552106) / SudocSudocFranceF
    corecore