59 research outputs found

    What was behind the M2 breakdown?

    Get PDF
    A deterioration in the link between the M2 monetary aggregate and GDP, along with large errors in predicting M2 growth, led the Board of Governors to downgrade the M2 aggregate as a reliable indicator of monetary policy in 1993. In this paper, we argue that the financial condition of depository institutions was a major factor behind the unusual pattern of M2 growth in the early 1990s. By constructing alternative measures of M2 based on banks’ and thrifts’ capital positions, we show that the anomalous behavior of M2 in the early 1990s disappears. Specifically, after accounting for the effect of capital constrained institutions on M2 growth, we are able to explain the unusual behavior of M2 velocity during this time period, obtain superior M2 forecasting results, and produce a more stable relationship between M2 and the ultimate goals of policy. Our work suggests that M2 may contain useful information about economic growth during periods of time when there are no major disturbances to depository institutions.Monetary policy

    Predicting drug interactions using cultured human hepatocytes

    Full text link
    In previous papers we demonstrated that cyclosporin A (CsA) was specifically oxidized in rabbit and human liver by cytochrome P-450IIIA. We therefore anticipated that any drug that is an inducer or an inhibitor of this cytochrome should lead to interaction with CsA when given in association with it. In order to confirm this hypothesis, primary cultures of human hepatocytes and human liver microsomes were used to “reproduce” in vitro clinically significant interactions observed between CsA and drugs known either as specific inducers (i.e., rifampicin) or as specific inhibitors (i.e., erythromycin) of P-450IIIA. Our results were in close agreement with the clinical reports. Human hepatocytes maintained in primary cultures for 72 hr in the presence of 50 ΜM rifampicin exhibited increased levels of P-450IIIA, determined by Western blot using specific antibodies, and concomitant increase in CsA oxidase activity, determined by HPLC analysis of extra and intracellular media. Conversely, these cultures exhibited erythromycin concentrationdependent decreases in CsA oxidase activity when incubated in the presence of 5, 20, and 100 ΜM erythromycin. In addition, a Lineweaver-Burk analysis of the erythromycin-mediated inhibition of CsA oxidase activity in human liver microsomes revealed competitive inhibition (with K i of 75 ΜM) as expected, this macrolide being a specific substrate of P-450IIIA. Using this experimental approach, 59 molecules representative of 17 different therapeutic classes were screened for inducers and inhibitors of CsA oxidase activity. Our results allowed us to elucidate the molecular mechanism of previously observed, but unexplained, drug interactions involving CsA, and to detect drugs that should interfere with CsA metabolism as inducers or inhibitors. Drugs detected as potential inducers of CsA oxidase included: rifampicin, sulfadimidine, phenobarbital, phenytoin, phenylbutazone, dexamethasone, sulfinpyrazone, and carbamazepine. Drugs detected as potential competitive inhibitors included: triacetyloleandomycin, erythromycin, josamycin, midecamycin, ketoconazole, miconazole, midazolam, nifedipin, diltiazem, verapamil, nicardipine, ergotamine, dihydroergotamine, glibenclamide, bromocryptine, ethynylestradiol, progesterone, cortisol, prednisone, prednisolone, and methylprednisolone. Finally cefoperazone, cefotaxime, ceftazidime, isoniazide, doxycycline, spiramycin, sulfamethoxazole, norfloxacin, pefloxacin, vancocin, trimethoprime, amphotericine B, valproic acid, quinidine, cimetidine, ranitidine, omeprazole, diclofenac, aspirin, paracetamol, debrisoquine, guanoxan, captopril, furosemide, acetazolamide, sparteine, gliclazide, and imipramine were found not to interfere with the hepatic metabolism of CsA.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/38363/1/1840140231_ftp.pd

    Ethanol and production of the hepatotoxic metabolite of acetaminophen in healthy adults

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109855/1/cptclpt200062.pd

    P450 3A activity and cyclosporine dosing in kidney and heart transplant recipients

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109917/1/cptclpt1994135.pd

    Interpatient heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel: Lack of prediction by the erythromycin breath test

    Get PDF
    The CYP3A subfamily of cytochromes P450 metabolize many medications and environmental contaminants. CYP3A4 and, in 25% of patients, CYP3A5 seem to be the major CYP3A genes expressed in adult liver. Hepatic levels of CYP3A4 can be estimated by the erythromycin breath test and vary at least 10-fold among patients. CYP3A4 has also been shown to be present in small bowel where it is responsible for significant "first-pass" metabolism of orally administered substrates. However, it is not known whether there is significant interindividual variability in the intestinal expression of CYP3A4, or whether the liver and intestinal catalytic activities of CYP3A4 correlate within an individual. It is also not known whether CYP3A5 is expressed in the small intestine. To address these questions, we administered the erythromycin breath test to 20 patients and obtained biopsies from their small bowel. There was a 6-fold variation in CYP3A catalytic activity (midazolam hydroxylation), an 11-fold variation in CYP3A4 protein content, and an 8-fold variation in CYP3A4 mRNA content in intestinal biopsies. There was an excellent correlation between intestinal CYP3A4 protein level and catalytic activity (r = 0.86; p = 0.0001); however, neither parameter significantly correlated with hepatic CYP3A4 activity as measured by the erythromycin breath test result (r = 0.27; p = 0.24 and r = 0.33; p = 0.15, respectively). We also found that CYP3A5 protein was readily detectable in biopsies from 14 (70%) of the patients, indicating that CYP3A5 is commonly expressed in human small intestine

    Cyp3A gene expression in human gut epithelium

    Get PDF
    CYP3A4, a major Phase I xenobiotic metabolizing enzyme present in liver, is also present in human small bowel epithelium where it appears to catalyse significant 'first pass' metabolism of some drugs. To determine whether CYP3A4 or the related enzymes CYP3A3, CYP3A5, and CYP3A7 are present in other regions of the digestive tract, we used CYP3A-specific antibodies to examine histological sections and epithelial microsomes obtained from a human organ donor. CYP3A-related proteins were detected in epithelia throughout the digestive tract and in gastric parietal cells, in pericentral hepatocytes, and in ductular cells of the pancreas. Immunoblot analysis suggested that the major CYP3A protein present in liver, jejunum, colon, and pancreas was CYP3A4 or CYP3A3, whereas CYP3A5 was the major protein present in stomach. Both CYP3A4 and CYP3A5 mRNA were detectable in all regions of the digestive tract using the polymerase chain reaction (PCR); however, only CYP3A4 could be detected by Northern blot analysis. CYP3A7 mRNA was consistently detected only in the liver by PCR and CYP3A3 mRNA was not detected in any of the tissues. We conclude that CYP3A4 and CYP3A5 are present throughout the human digestive tract and that differences in the expression of these enzymes may account for inter-organ differences in the metabolism of CYP3 A substrates

    Mechanisms of enhanced oral availability of CYP3A4 substrates by grapefruit constituents: Decreased enterocyte CYP3A4 concentration and mechanism-based inactivation by furanocoumarins

    Get PDF
    Grapefruit juice increases the oral availability of a variety of CYP3A4 substrates. It has been shown that recurrent grapefruit juice ingestion results in a loss of CYP3A4 from the small bowel epithelium. We now show that the reduction in intestinal CYP3A4 concentration is rapid; a 47% decrease occurred in a healthy volunteer within 4 hr after consuming grapefruit juice. To identify the specific components of the juice responsible for this effect, we used a recently developed Caco-2 cell culture model of human intestinal epithelium that expresses catalytically active CYP3A4. We found that grapefruit oil and two furanocoumarin constituents (6*,7*-dihydroxybergamottin and a closely related dimer) caused a dose-dependent fall in CYP3A4 catalytic activity and immunoreactive CYP3A4 concentration. The effect was selective in that concentrations of CYP1A1 and CYP2D6 did not fall, consistent with previous results obtained in vivo. Assays of various juices confirmed that 6*,7*-dihydroxybergamottin is the major furanocoumarin present and, although its concentration varies significantly among types and brands of grapefruit juice, it is consistently present in concentrations exceeding the IC50 (1 mM) for loss of midazolam 1*-hydroxylase activity determined in the Caco-2 cells. Studies with recombinant CYP3A4 revealed that 6*,7*-dihydroxybergamottin is a mechanism-based inactivator, which supports the idea that loss of CYP3A4 results from accelerated degradation of the enzyme. We conclude that the effect of grapefruit juice on oral availability of CYP3A4 substrates can be largely accounted for by the presence of 6*,7*-dihydroxybergamottin although other furanocoumarins probably also contribute
    • 

    corecore