433 research outputs found

    BDNF Contributes to Both Rapid and Homeostatic Alterations in AMPA Receptor Surface Expression in Nucleus Accumbens Medium Spiny Neurons

    Get PDF
    Brain-derived neurotrophic factor (BDNF) plays a critical role in plasticity at glutamate synapses and the effects of repeated cocaine exposure. We recently showed that intracranial injection of BDNF into the rat nucleus accumbens (NAc), a key region for cocaine addiction, rapidly increases AMPA receptor (AMPAR) surface expression. To further characterize BDNF’s role in both rapid AMPAR trafficking and slower, homeostatic changes in AMPAR surface expression, we investigated the effects of acute (30 min) and long-term (24 h) treatment with BDNF on AMPAR distribution in NAc medium spiny neurons from postnatal rats co-cultured with mouse prefrontal cortex (PFC) neurons to restore excitatory inputs. Immunocytochemical studies showed that acute BDNF treatment increased cell surface GluA1 and GluA2 levels, as well as their co-localization, on NAc neurons. This effect of BDNF, confirmed using a protein crosslinking assay, was dependent on ERK but not AKT signaling. In contrast, long-term BDNF treatment decreased AMPAR surface expression on NAc neurons. Based on this latter result, we tested the hypothesis that BDNF plays a role in AMPAR “scaling down” in response to a prolonged increase in neuronal activity produced by bicuculline (24 h). Supporting this hypothesis, decreasing BDNF signaling with the extracellular BDNF scavenger TrkB-Fc prevented the scaling down of GluA1 and GluA2 surface levels in NAc neurons normally produced by bicuculline. In conclusion, BDNF exerts bidirectional effects on NAc AMPAR surface expression, depending on duration of exposure. Furthermore, BDNF’s involvement in synaptic scaling in the NAc differs from its previously described role in the visual cortex

    Mixed metal nanoparticle assembly and the effect on surface enhanced raman scattering

    Get PDF
    Here we report the assembly of mixed metal nanoparticles using an oligonucleotide-templated approach. Substitution of one of the gold nanoparticle probes with an analagous silver probe to produce a hetero-metal duplex permitted surface enhanced Raman scattering of the dye label, exploiting the improved surface enhancement properties of silver nanoparticles whilst maintaining the surface chemistry benefits of gold nanoaprticle

    mGlu5 Inhibition in the Basolateral Amygdala Prevents Estrous Cycle-Dependent Changes in Cue-Induced Cocaine Seeking

    Get PDF
    Drug associated cues are a common relapse trigger for individuals recovering from cocaine use disorder. Sex and ovarian hormones influence patterns of cocaine use and relapse vulnerability, with studies indicating that females show increased cue-induced craving and relapse vulnerability compared to males. In a rodent model of cocaine craving and relapse vulnerability, cue-induced cocaine seeking behavior following weeks of withdrawal from extended-access cocaine self-administration is higher in females in the estrus stage of the reproductive (estrous) cycle (Estrus Females) compared to both Males and females in all other stages (Non-Estrus Females). However, the neuronal substrates and cellular mechanisms underlying these sex differences is not fully understood. One region that contributes to both sex differences in behavioral responding and cue-induced cocaine seeking is the basolateral amygdala (BLA), while one receptor known to play a critical role in mediating cocaine seeking behavior is metabotropic glutamate receptor 5 (mGlu5). Here we assessed the effects of BLA mGlu5 inhibition following prolonged withdrawal from cocaine self-administration on observed estrous cycle-dependent changes in cue-induced cocaine seeking behavior. We found that BLA microinjections of the mGlu5 antagonist MTEP selectively reduced the enhanced cue-induced cocaine seeking normally observed in Estrus Females while having no effect on cocaine seeking in Males and Non-Estrus Females. These findings identify a unique interaction between cocaine-exposure, estrous cycle fluctuations and BLA mGlu5-dependent transmission on cue-induced cocaine seeking behavior

    The PKC Inhibitor Ro31-8220 Blocks Acute Amphetamine-Induced Dopamine Overflow in the Nucleus Accumbens

    Get PDF
    Acute administration of the psychostimulant amphetamine increases extracellular levels of dopamine (DA) by reversing the DA transporter on ascending midbrain DA neurons. In vitro studies using striatal synaptosomal, slice and nucleus accumbens (NAcc) tissue preparations have implicated protein kinase C (PKC) in this effect. The present study further examined this effect in vivo by assessing the ability of the PKC inhibitor, Ro31-8220 (10 microM), to inhibit acute amphetamine-induced DA overflow when applied with this drug to the NAcc via reverse dialysis. Amphetamine was applied at a concentration of 30 microM, and the core and shell subregions of the NAcc were assayed separately in freely moving rats. These brain regions play a role in the acute locomotor-activating and motivational effects of amphetamine. Consistent with the findings of previous in vitro experiments, reverse dialysis of Ro31-8220 with amphetamine robustly attenuated the ability of this drug to increase extracellular levels of dopamine in both the core and shell subregions of the NAcc. These results confirm that amphetamine stimulates dopamine overflow via a PKC-dependent mechanism

    Distribution of AMPA Receptor Subunits and Tarps in Synaptic and Extrasynaptic Membranes of the Adult Rat Nucleus Accumbens

    Get PDF
    We characterized the distribution of AMPA receptor (AMPAR) subunits and the transmembrane AMPA receptor regulatory proteins (TARPs) γ-2 and γ-4 in adult rat nucleus accumbens (NAc) using a method that separates plasma membranes into synaptic membrane-enriched and extrasynaptic membrane-enriched fractions. We also measured GluA1 phosphorylated at serine 845 (pS845 GluA1) and serine 831 (pS831 GluA1). GluA1–3 protein levels and pS831 GluA1/total GluA1 were higher in synaptic membranes. However, pS845 GluA1/total GluA1 was higher in extrasynaptic membranes, consistent with a role for S845 phosphorylation in GluA1 insertion at extrasynaptic sites. Homeric GluA1 receptors were detected in extrasynaptic membranes, consistent with evidence for extrasynaptic Ca2+-permeable AMPARs in other systems. The TARP γ-2 was enriched in synaptic membranes, whereas γ-4 was mainly found in extrasynaptic membranes, suggesting distinct roles for these proteins in the NAc. These experiments provide fundamental information that will aid in the interpretation of studies on AMPAR-related plasticity in the NAc

    Inhibition Of Camkii in the Nucleus Accumbens Shell Decreases Enhanced Amphetamine Intake in Sensitized Rats

    Get PDF
    Microinjection of the calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93 into the nucleus accumbens (NAcc) shell impairs expression of the sensitized locomotion and NAcc dopamine (DA) overflow normally observed in psychostimulant-exposed rats. Based on these results, we investigated the effect of NAcc shell KN-93 on the enhanced amphetamine (AMPH) intake normally observed in AMPH- relative to saline-exposed rats. Rats were administered five injections of either AMPH (1.5mg/kg, i.p.) or saline, one injection every 2-3 days. Fourteen days following the last injection, they were trained to self-administer AMPH (200 microg/kg/infusion, i.v.) first on fixed ratio schedules (FR) and then on a progressive ratio schedule of reinforcement (PR). As expected, AMPH-exposed rats worked harder and obtained significantly more drug infusions than saline-exposed rats on the PR schedule. After 4 days of stable responding, all rats were bilaterally microinjected with KN-93 (1 or 10 nmol/0.5 microl/side) into the NAcc shell, 2 min prior to the beginning of the self-administration session. Inhibiting CaMKII in this site reduced the enhanced drug intake observed in AMPH-exposed rats to levels no longer significantly different from those of saline-exposed rats. Responding in these latter controls was not affected by KN-93 nor did KN-93 affect responding in AMPH-exposed rats when it was infused into the NAcc core. Thus, in a manner similar to what has been reported for sensitized locomotion and NAcc DA overflow, these results suggest that inhibiting CaMKII in the NAcc shell attenuates the enhanced motivation to obtain a drug reinforcer that is normally displayed in AMPH-exposed rats

    Surface Expression of GABAA Receptors in the Rat Nucleus Accumbens is Increased in Early but Not Late Withdrawal from Extended-Access Cocaine Self-Administration

    Get PDF
    It is well established that cocaine-induced changes in glutamate receptor expression in the nucleus accumbens (NAc) play a significant role in animal models of cocaine addiction. Far less is known about cocaine-induced changes in GABA transmission, despite its importance in regulating NAc output via local interneurons and medium spiny neuron (MSN) axon collaterals (GABA \u27microcircuit\u27). Here we investigated whether GABAA receptor surface or total expression is altered following an extended-access cocaine self-administration regimen that produces a time-dependent intensification (incubation) of cue-induced cocaine craving in association with strengthening of AMPA receptor (AMPAR) transmission onto MSN. Rats self-administered cocaine or saline (control condition) 6h/day for 10 days. NAc tissue was obtained and surface proteins biotinylated on three withdrawal days (WD) chosen to span incubation of craving and associated AMPAR plasticity: WD2, WD25 and WD48. Immunoblotting was used to measure total and surface expression of three GABAA receptor subunits (α1, α2, and α4) that are strongly expressed in the NAc. We found a transient increase in surface, but not total, expression of the α2 subunit on WD2 from cocaine self-administration, an effect that was no longer observed by WD25. The expression of α1 and α4 subunits was not altered at these withdrawal times. On WD48, when AMPAR transmission is significantly potentiated, we did not find any alteration in GABAA receptor surface or total expression. Our findings suggest that the strengthening of AMPAR-mediated glutamate transmission in the NAc is not accompanied by compensatory strengthening of GABAergic transmission through insertion of additional GABAA receptors

    Interactions Between Repetitive Mild Traumatic Brain Injury and Methylphenidate Administration on Catecholamine Transporter Protein Levels Within the Rodent Prefrontal Cortex

    Get PDF
    It is theorized that low concentrations of dopamine (DA) and norepinephrine (NE) within in the prefrontal cortex (PFC) following traumatic brain injury (TBI) leads to increased risky behavior. Our lab has shown that repeated mild TBI (rmTBI) sex-differentially increases risky behavior in a rodent model. Methylphenidate (MPH) is a psychostimulant drug used to treat symptoms of Attention-Deficit Hyperactivity Disorder (ADHD), also driven by a hypo-catecholaminergic PFC. MPH elevates catecholamine levels by blocking DA and NE transporters, DAT and NET. While the potential of psychostimulants to treat post-TBI symptoms have been explored, the effects of sub-chronic MPH on transporter levels following rmTBI has not. To investigate this gap, we used the closed head-controlled cortical impact model to induce 3 mild injuries in Long Evans rats of both sexes. Rats received either saline or MPH (2mg/kg) daily for 7 days (4 groups; sham/saline, sham/MPH, rmTBI/saline, rmTBI/MPH). Brain tissue from the medial (mPFC) and orbitofrontal (OFC) regions of the PFC were collected and standard western blotting protocols were used to measure protein levels of NET, tyrosine hydroxylase (TH), vesicular monoamine transporter 2 (VMAT2), catechol-O-methyltransferase (COMT) and monoamine oxidase (MOA). Within the mPFC, female NET and VMAT levels were decreased in the rmTBI/saline group, while the rmTBI/MPH group’s protein levels did not differ from controls. In males, mPFC VMAT levels were decreased in both rmTBI groups. Within the OFC, NET and VMAT levels were decreased in the male rmTBI/MPH group only. These results suggest that rmTBI reduces transporter levels within regions of the PFC and that sub-chronic MPH treatment may produce restorative benefits on these protein levels in female, but not male rodents following rmTBI. We conclude that interactions between rmTBI and MPH on levels of catecholamine regulatory proteins may begin to elucidate sex differential changes in risk-taking behavior following injury and treatment

    Examining Levels of Catecholamine Neurotransmitter Regulatory Proteins Within the Prefrontal Cortex of Rodents Following Traumatic Brain Injury

    Get PDF
    Traumatic brain injury (TBI) resulting from impact to the head can cause long lasting impairments of cognitive processes that lead to increased risk-taking behavior in clinical populations. Our laboratory has recently shown that female, but not age-matched male, rats increase preference for risky choices after multiple experimentally-induced mild TBI’s. Our overarching goal is to understand the neural mechanisms underlying TBI-induced increases in risk-taking behavior. The prefrontal cortex (PFC) plays a prominent role in risk-based decision making. Sub[1]regions of the PFC include the medial PFC (mPFC), the orbitofrontal cortex (OFC), and the anterior cingulate cortex (ACC), and these sub[1]regions play specific roles in decision-making processes. Catecholamine neurotransmitter circuits, such as the dopamine (DA) and norepinephrine (NE) systems, project to the PFC and modulate the PFC’s control over executive functions. Previous studies have demonstrated that both dopamine (DA) and norepinephrine (NE) transmitter levels are increased in the PFC immediately following TBI, which is then followed by a persistent hypo-catecholaminergic state. These results suggest that an imbalance of catecholamine levels within the PFC may underlie aberrant decision-making behavior following TBI; however, it is not presently known what processes contribute to TBI-induced catecholamine imbalance. Here we examined how levels of catecholamine neurotransmitter regulatory proteins responsible for packaging (VMAT2) and degrading (COMT and MAO) are altered to explain chronic decreases in DA and NE levels observed in the PFC following TBI. Age-matched adult male and female Long Evans rats (n=6-8) were exposed to either a single or a series of three closed head controlled cortical impact (CH-CCI) injuries over the course of one week. Rats were sacrificed and brain tissue (mPFC, OFC, and ACC) were collected and standard western blotting protocols were used to measure the levels of VMAT2, COMT, and MAO in each sub-region
    • …
    corecore