214 research outputs found

    Guidelines for consistent cardiovascular post-mortem examination, sampling and reporting of lesions in European zoo-housed great apes

    Get PDF
    Inconsistencies and inadequacies in both the approach to post-mortem examination of the heart and the subsequent reporting of findings have been blamed for a lack of progression of understanding about great ape cardiovascular disease. In order to minimize and confront these issues in the United States, Association of Zoos and Aquariums-member zoos have necropsy data collated by the Great Ape Heart Project using a protocol developed by their pathology advisors. In Europe, however, there does not appear to be in existence any standardization or process for consistent cardiac post-mortem examination, data collection and/or relevant research. This article provides those readers working within/for European collections with a suggested protocol for the initial post-mortem inspection and sampling of the hearts of great apes. This article also outlines the detailed macroscopic and histopathological examination that is currently carried out at The University of Nottingham, UK, as part of an ongoing prospective, multi-centre study into great ape cardiovascular disease aetiopathogenesis. Finally, readers are offered guidance on the reporting and description specifically of idiopathic myocardial fibrosis (also referred to elsewhere as fibrosing cardiomyopathy). The standardized post-mortem examination of the great ape heart across European zoological collections will ensure a more uniform sampling procedure resulting in the availability of consistent good-quality data. It is hoped that this will, in turn, inform diagnostic pathology and research in this area, and enhance understanding about the aetiopathogenesis of great ape cardiovascular lesions

    Unlocking the role of a genital herpesvirus, otarine herpesvirus 1, in California sea lion cervical cancer

    Get PDF
    This research was funded by the Geoffrey Hughes Research Fellowship and The Marine Mammal Center.Urogenital carcinoma in California sea lions (Zalophus californianus) is the most common cancer of marine mammals. Primary tumors occur in the cervix, vagina, penis, or prepuce and aggressively metastasize resulting in death. This cancer has been strongly associated with a sexually transmitted herpesvirus, otarine herpesvirus 1 (OtHV1), but the virus has been detected in genital tracts of sea lions without cancer and a causative link has not been established. To determine if OtHV1 has a role in causing urogenital carcinoma we sequenced the viral genome, quantified viral load from cervical tissue from sea lions with (n = 95) and without (n = 163) urogenital carcinoma, and measured viral mRNA expression using in situ mRNA hybridization (Basescope®) to quantify and identify the location of OtHV1 mRNA expression. Of the 95 sea lions diagnosed with urogenital carcinoma, 100% were qPCR positive for OtHV1, and 36% of the sea lions with a normal cervix were positive for the virus. The non-cancer OtHV1 positive cases had significantly lower viral loads in their cervix compared to the cervices from sea lions with urogenital carcinoma. The OtHV1 genome had several genes similar to the known oncogenes, and RNA in situ hybridization demonstrated high OtHV1 mRNA expression within the carcinoma lesions but not in normal cervical epithelium. The high viral loads, high mRNA expression of OtHV1 in the cervical tumors, and the presence of suspected OtHV1 oncogenes support the hypothesis that OtHV1 plays a significant role in the development of sea lion urogenital carcinoma.Publisher PDFPeer reviewe

    Persistent contaminants and herpesvirus OtHV1 are positively associated with cancer in wild California Sea Lions (Zalophus californianus)

    Get PDF
    This work was funded by the Geoffrey Hughes Fellowship, the National Institutes of Health (Fogarty International Center) and National Science Foundation joint program for the Ecology of Infectious Disease, the National Marine Fisheries Service Marine Mammal Heath and Stranding Program, and the Natural Environment Research Council grant number NE/R015007/.The prevalence of cancer in wild California sea lions (Zalophus californianus) is one of the highest amongst mammals, with 18–23% of adult animals examined post-mortem over the past 40 years having urogenital carcinoma. To date, organochlorines, genotype and infection with Otarine herpesvirus-1 (OtHV-1) have been identified in separate studies using distinct animals as associated with this carcinoma. Multi-year studies using large sample sizes to investigate the relative importance of multiple factors on marine mammal health are rare due to logistical and ethical challenges. The objective of this study was to use a case control approach with samples from 394 animals collected over 20 years in a multifactorial analysis to explore the relative importance of distinct factors identified to date as associated with sea lion cancer in the likelihood of sea lion carcinoma. Stepwise regression indicated that the best model to explain carcinoma occurrence included herpesvirus status, contaminant exposure, and blubber depth, but not genotype at a single microsatellite locus, PV11. The odds of carcinoma was 43.57 times higher in sea lions infected with OtHV-1 (95% CI 14.61, 129.96, p <0.001), and 1.48 times higher for every unit increase in the loge[contaminant concentrations], ng g–1 (an approximate tripling of concentration), in their blubber (95% CI 1.11, 1.97, p <0.007), after controlling for the effect of blubber depth. These findings demonstrate the importance of contaminant exposure combined with OtHV1 infection, in the potential for cancer occurrence in wild sea lions.Publisher PDFPeer reviewe

    Cloning and Characterization of Glutamate Receptors in Californian Sea Lions (Zalophus californianus)

    Get PDF
    Domoic acid produced by marine algae has been shown to cause acute and chronic neurologic sequelae in Californian sea lions following acute or low-dose exposure. Histological findings in affected animals included a degenerative cardiomyopathy that was hypothesized to be caused by over-excitation of the glutamate receptors (GluRs) speculated to be present in the sea lion heart. Thus tissues from five sea lions without lesions associated with domoic acid toxicity and one animal with domoic acid-induced chronic neurologic sequelae and degenerative cardiomyopathy were examined for the presence of GluRs. Immunohistochemistry localized mGluR 2/3, mGluR 5, GluR 2/3 and NMDAR 1 in structures of the conducting system and blood vessels. NMDAR 1 and GluR 2/3 were the most widespread as immunoreactivity was observed within sea lion conducting system structures. PCR analysis, cloning and subsequent sequencing of the seal lion GluRs showed only 80% homology to those from rats, but more than 95% homologous to those from dogs. The cellular distribution and expression of subtypes of GluRs in the sea lion hearts suggests that exposure to domoic acid may induce cardiac damage and functional disturbances

    Macaque models of human infectious disease.

    Get PDF
    Macaques have served as models for more than 70 human infectious diseases of diverse etiologies, including a multitude of agents-bacteria, viruses, fungi, parasites, prions. The remarkable diversity of human infectious diseases that have been modeled in the macaque includes global, childhood, and tropical diseases as well as newly emergent, sexually transmitted, oncogenic, degenerative neurologic, potential bioterrorism, and miscellaneous other diseases. Historically, macaques played a major role in establishing the etiology of yellow fever, polio, and prion diseases. With rare exceptions (Chagas disease, bartonellosis), all of the infectious diseases in this review are of Old World origin. Perhaps most surprising is the large number of tropical (16), newly emergent (7), and bioterrorism diseases (9) that have been modeled in macaques. Many of these human diseases (e.g., AIDS, hepatitis E, bartonellosis) are a consequence of zoonotic infection. However, infectious agents of certain diseases, including measles and tuberculosis, can sometimes go both ways, and thus several human pathogens are threats to nonhuman primates including macaques. Through experimental studies in macaques, researchers have gained insight into pathogenic mechanisms and novel treatment and vaccine approaches for many human infectious diseases, most notably acquired immunodeficiency syndrome (AIDS), which is caused by infection with human immunodeficiency virus (HIV). Other infectious agents for which macaques have been a uniquely valuable resource for biomedical research, and particularly vaccinology, include influenza virus, paramyxoviruses, flaviviruses, arenaviruses, hepatitis E virus, papillomavirus, smallpox virus, Mycobacteria, Bacillus anthracis, Helicobacter pylori, Yersinia pestis, and Plasmodium species. This review summarizes the extensive past and present research on macaque models of human infectious disease

    Heart disease is common in humans and chimpanzees, but is caused by different pathological processes

    Get PDF
    Heart disease is common in both humans and chimpanzees, manifesting typically as sudden cardiac arrest or progressive heart failure. Surprisingly, although chimpanzees are our closest evolutionary relatives, the major cause of heart disease is different in the two species. Histopathology data of affected chimpanzee hearts from two primate centers, and analysis of literature indicate that sudden death in chimpanzees (and in gorillas and orangutans) is commonly associated with diffuse interstitial myocardial fibrosis of unknown cause. In contrast, most human heart disease results from coronary artery atherosclerosis, which occludes myocardial blood supply, causing ischemic damage. The typical myocardial infarction of humans due to coronary artery thrombosis is rare in these apes, despite their human-like coronary-risk-prone blood lipid profiles. Instead, chimpanzee ‘heart attacks’ are likely due to arrythmias triggered by myocardial fibrosis. Why do humans not often suffer from the fibrotic heart disease so common in our closest evolutionary cousins? Conversely, why do chimpanzees not have the kind of heart disease so common in humans? The answers could be of value to medical care, as well as to understanding human evolution. A preliminary attempt is made to explore possibilities at the histological level, with a focus on glycosylation changes

    SIVagm Infection in Wild African Green Monkeys from South Africa: Epidemiology, Natural History, and Evolutionary Considerations

    Get PDF
    Pathogenesis studies of SIV infection have not been performed to date in wild monkeys due to difficulty in collecting and storing samples on site and the lack of analytical reagents covering the extensive SIV diversity. We performed a large scale study of molecular epidemiology and natural history of SIVagm infection in 225 free-ranging AGMs from multiple locations in South Africa. SIV prevalence (established by sequencing pol, env, and gag) varied dramatically between infant/juvenile (7%) and adult animals (68%) (p<0.0001), and between adult females (78%) and males (57%). Phylogenetic analyses revealed an extensive genetic diversity, including frequent recombination events. Some AGMs harbored epidemiologically linked viruses. Viruses infecting AGMs in the Free State, which are separated from those on the coastal side by the Drakensberg Mountains, formed a separate cluster in the phylogenetic trees; this observation supports a long standing presence of SIV in AGMs, at least from the time of their speciation to their Plio-Pleistocene migration. Specific primers/probes were synthesized based on the pol sequence data and viral loads (VLs) were quantified. VLs were of 104-106 RNA copies/ml, in the range of those observed in experimentally-infected monkeys, validating the experimental approaches in natural hosts. VLs were significantly higher (107-108 RNA copies/ml) in 10 AGMs diagnosed as acutely infected based on SIV seronegativity (Fiebig II), which suggests a very active transmission of SIVagm in the wild. Neither cytokine levels (as biomarkers of immune activation) nor sCD14 levels (a biomarker of microbial translocation) were different between SIV-infected and SIV-uninfected monkeys. This complex algorithm combining sequencing and phylogeny, VL quantification, serology, and testing of surrogate markers of microbial translocation and immune activation permits a systematic investigation of the epidemiology, viral diversity and natural history of SIV infection in wild African natural hosts. © 2013 Ma et al

    A retrospective review of great ape cardiovascular disease epidemiology and pathology

    Get PDF
    Cardiovascular disease is associated with significant mortality in zoo‐housed great apes, yet little is known about its epidemiology and aetiopathogenesis, and therefore its diagnosis, treatment and prevention. In this retrospective study, the frequency and patterns of cardiovascular disease‐associated mortality in zoo‐housed great apes is explored. Data relating to 71 great apes [Bonobos Pan paniscus (n = 13), Chimpanzees Pan troglodytes (n = 37), Western lowland gorillas Gorilla gorilla gorilla (n = 15), and Bornean orangutans Pongo pygmaeus and Sumatran orangutans Pongo abelii (n = 6)], which died between 2004 and 2014, were studied and key information relating to their signalment (taxa, age, sex), and manner and cause of death analysed. Male sex and increasing age were found to be associated with an increased risk of cardiovascular disease‐associated death. Relative to the other taxa, orangutans appeared to be less at risk of heart disease‐associated mortality. Deaths were often found to be sudden and unexpected. Cardiomyopathies were the most frequently diagnosed cardiovascular disorder. Of these, a group of cardiomyopathies characterized by the presence of myocardial fibrosis were most common, although there were inconsistencies with regards the reporting of other histopathological features. The study identified potential risk factors involved in great ape cardiovascular disease aetiopathogenesis which warrant further exploration. The findings also suggest a need for proactive screening to identify those affected earlier in the disease course. Finally, the study highlights a critical need for improvements to be made to the current approach to post‐mortem investigation of great ape heart disease and the subsequent reporting of cardiovascular lesions
    corecore