486 research outputs found

    Effects of a Large Mesospheric Temperature Enhancement on the Hydroxyl Rotational Temperature as Observedfrom the Ground

    Get PDF
    The rotational temperature obtained from the rotational population distribution in the bands of the hydroxyl airglow has been shown to be a suitable proxy for the temperature at a height of 87 km [She and Lowe, 1998]. In this paper we examine in detail simultaneous observations on November 2–3, 1997, at Fort Collins, Colorado (41°N, 105°W), with both a sodium temperature lidar and the Coupling, Energetics, and Dynamics of Atmospheric Regions (CEDAR) OH mesospheric temperature mapper during which significant differences between the hydroxyl and lidar temperatures occur. The large differences are associated with a major temperature enhancement in the region of the peak of the hydroxyl emission. We model the effect on the shape of the emission rate profile of the hydroxyl airglow caused by the large temperature enhancement observed on this night by the lidar. As a result of the temperature sensitivity of the processes that give rise to the airglow, the profile shows major distortions from its normal shape. These distortions in turn lead to hydroxyl rotational temperatures that differ significantly from the 87-km lidar observations. The mean rotational temperature deduced in this way agrees well with the observed values. Such deviations in the temperature are expected to be rare, occurring only when a large temperature enhancement occurs near the peak of the airglow emission profile

    Diversity and impact of rare variants in genes encoding the platelet G protein-coupled receptors

    Get PDF
    Platelet responses to activating agonists are influenced by common population variants within or near G protein-coupled receptor (GPCR) genes that affect receptor activity. However, the impact of rare GPCR gene variants is unknown. We describe the rare single nucleotide variants (SNVs) in the coding and splice regions of 18 GPCR genes in 7,595 exomes from the 1,000-genomes and Exome Sequencing Project databases and in 31 cases with inherited platelet function disorders (IPFDs). In the population databases, the GPCR gene target regions contained 740 SNVs (318 synonymous, 410 missense, 7 stop gain and 6 splice region) of which 70 % had global minor allele frequency (MAF) < 0.05 %. Functional annotation using six computational algorithms, experimental evidence and structural data identified 156/740 (21 %) SNVs as potentially damaging to GPCR function, most commonly in regions encoding the transmembrane and C-terminal intracellular receptor domains. In 31 index cases with IPFDs (Gi-pathway defect n=15; secretion defect n=11; thromboxane pathway defect n=3 and complex defect n=2) there were 256 SNVs in the target regions of 15 stimulatory platelet GPCRs (34 unique; 12 with MAF< 1 % and 22 with MAF≥ 1 %). These included rare variants predicting R122H, P258T and V207A substitutions in the P2Y12 receptor that were annotated as potentially damaging, but only partially explained the platelet function defects in each case. Our data highlight that potentially damaging variants in platelet GPCR genes have low individual frequencies, but are collectively abundant in the population. Potentially damaging variants are also present in pedigrees with IPFDs and may contribute to complex laboratory phenotypes

    Characterising Probabilistic Processes Logically

    Full text link
    In this paper we work on (bi)simulation semantics of processes that exhibit both nondeterministic and probabilistic behaviour. We propose a probabilistic extension of the modal mu-calculus and show how to derive characteristic formulae for various simulation-like preorders over finite-state processes without divergence. In addition, we show that even without the fixpoint operators this probabilistic mu-calculus can be used to characterise these behavioural relations in the sense that two states are equivalent if and only if they satisfy the same set of formulae.Comment: 18 page

    Finite 3π3\pi Cut Approximation for the πNNˉ\pi N\bar{N} Form Factor

    Full text link
    Assuming the length of the 3π3\pi cut to be finite and approximating the integrated amplitude by a constant, we derive an expression for the πNNˉ\pi N\bar{N} form factor which is very close to that given by a simple pole. The specific predictions of the obtained form factor for the region of small momentum transfer are discussed along the lines of the Goldberger-Treiman relation.Comment: 17 pages, Late

    Energy efficiency: what has research delivered in the last 40 years?

    Get PDF
    This article presents a critical assessment of 40 years of research that may be brought under the umbrella of energy efficiency, spanning different aggregations and domains-from individual producing and consuming agents to economy-wide effects to the role of innovation to the influence of policy. After 40 years of research, energy efficiency initiatives are generally perceived as highly effective. Innovation has contributed to lowering energy technology costs and increasing energy productivity. Energy efficiency programs in many cases have reduced energy use per unit of economic output and have been associated with net improvements in welfare, emission reductions, or both. Rebound effects at the macro level still warrant careful policy attention, as they may be nontrivial. Complexity of energy efficiency dynamics calls for further methodological and empirical advances, multidisciplinary approaches, and granular data at the service level for research in this field to be of greatest societal benefit

    Fluid transport at low Reynolds number with magnetically actuated artificial cilia

    Full text link
    By numerical modeling we investigate fluid transport in low-Reynolds-number flow achieved with a special elastic filament or artifical cilium attached to a planar surface. The filament is made of superparamagnetic particles linked together by DNA double strands. An external magnetic field induces dipolar interactions between the beads of the filament which provides a convenient way of actuating the cilium in a well-controlled manner. The filament has recently been used to successfully construct the first artificial micro-swimmer [R. Dreyfus at al., Nature 437, 862 (2005)]. In our numerical study we introduce a measure, which we call pumping performance, to quantify the fluid transport induced by the magnetically actuated cilium and identify an optimum stroke pattern of the filament. It consists of a slow transport stroke and a fast recovery stroke. Our detailed parameter study also reveals that for sufficiently large magnetic fields the artificial cilium is mainly governed by the Mason number that compares frictional to magnetic forces. Initial studies on multi-cilia systems show that the pumping performance is very sensitive to the imposed phase lag between neighboring cilia, i.e., to the details of the initiated metachronal wave.Comment: 12 pages, 10 figures. To appear in EPJE, available online at http://dx.doi.org/10.1140/epje/i2008-10388-

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore