45 research outputs found
Random phase approximation for multi-band Hubbard models
We derive the random-phase approximation for spin excitations in general
multi-band Hubbard models, starting from a collinear ferromagnetic Hartree-Fock
ground state. The results are compared with those of a recently introduced
variational many-body approach to spin-waves in itinerant ferromagnets. As we
exemplify for Hubbard models with one and two bands, the two approaches lead to
qualitatively different results. The discrepancies can be traced back to the
fact that the Hartree-Fock theory fails to describe properly the local moments
which naturally arise in a correlated-electron theory.Comment: 25 pages, 2 figure
On the interpretation of spin-polarized electron energy loss spectra
We study the origin of the structure in the spin-polarized electron energy
loss spectroscopy (SPEELS) spectra of ferromagnetic crystals. Our study is
based on a 3d tight-binding Fe model, with constant onsite Coulomb repulsion U
between electrons of opposite spin. We find it is not the total density of
Stoner states as a function of energy loss which determines the response of the
system in the Stoner region, as usually thought, but the densities of Stoner
states for only a few interband transitions. Which transitions are important
depends ultimately on how strongly umklapp processes couple the corresponding
bands. This allows us to show, in particular, that the Stoner peak in SPEELS
spectra does not necessarily indicate the value of the exchange splitting
energy. Thus, the common assumption that this peak allows us to estimate the
magnetic moment through its correlation with exchange splitting should be
reconsidered, both in bulk and surface studies. Furthermore, we are able to
show that the above mechanism is one of the main causes for the typical
broadness of experimental spectra. Finally, our model predicts that optical
spin waves should be excited in SPEELS experiments.Comment: 11 pages, 7 eps figures, REVTeX fil