12,997 research outputs found
The Red Queen visits Minkowski Space
When Alice went `Through the Looking Glass' [1], she found herself in a
situation where she had to run as fast as she could in order to stay still. In
accordance with the dictum that truth is stranger than fiction, we will see
that it is possible to find a situation in special relativity where running
towards one's target is actually counter-productive. Although the situation is
easily analysed algebraically, the qualitative properties of the analysis are
greatly illuminated by the use of space-time diagrams
Electronic marking and identification techniques to discourage document copying
Modern computer networks make it possible to distribute documents quickly and economically by electronic means rather than by conventional paper means. However, the widespread adoption of electronic distribution of copyrighted material is currently impeded by the ease of illicit copying and dissemination. In this paper we propose techniques that discourage illicit distribution by embedding each document with a unique codeword. Our encoding techniques are indiscernible by readers, yet enable us to identify the sanctioned recipient of a document by examination of a recovered document. We propose three coding methods, describe one in detail, and present experimental results showing that our identification techniques are highly reliable, even after documents have been photocopied
Glyoxal 4-nitrophenylhydrazone : triple helices linked into a three-dimensional channel structure
Peer reviewedPublisher PD
Quantum imaging by coherent enhancement
Conventional wisdom dictates that to image the position of fluorescent atoms
or molecules, one should stimulate as much emission and collect as many photons
as possible. That is, in this classical case, it has always been assumed that
the coherence time of the system should be made short, and that the statistical
scaling defines the resolution limit for imaging time .
However, here we show in contrast that given the same resources, a long
coherence time permits a higher resolution image. In this quantum regime, we
give a procedure for determining the position of a single two-level system, and
demonstrate that the standard errors of our position estimates scale at the
Heisenberg limit as , a quadratic, and notably optimal, improvement
over the classical case.Comment: 4 pages, 4 figue
Quantum Inference on Bayesian Networks
Performing exact inference on Bayesian networks is known to be #P-hard.
Typically approximate inference techniques are used instead to sample from the
distribution on query variables given the values of evidence variables.
Classically, a single unbiased sample is obtained from a Bayesian network on
variables with at most parents per node in time
, depending critically on , the probability the
evidence might occur in the first place. By implementing a quantum version of
rejection sampling, we obtain a square-root speedup, taking
time per sample. We exploit the Bayesian
network's graph structure to efficiently construct a quantum state, a q-sample,
representing the intended classical distribution, and also to efficiently apply
amplitude amplification, the source of our speedup. Thus, our speedup is
notable as it is unrelativized -- we count primitive operations and require no
blackbox oracle queries.Comment: 8 pages, 3 figures. Submitted to PR
Fixed-point quantum search with an optimal number of queries
Grover's quantum search and its generalization, quantum amplitude
amplification, provide quadratic advantage over classical algorithms for a
diverse set of tasks, but are tricky to use without knowing beforehand what
fraction of the initial state is comprised of the target states. In
contrast, fixed-point search algorithms need only a reliable lower bound on
this fraction, but, as a consequence, lose the very quadratic advantage that
makes Grover's algorithm so appealing. Here we provide the first version of
amplitude amplification that achieves fixed-point behavior without sacrificing
the quantum speedup. Our result incorporates an adjustable bound on the failure
probability, and, for a given number of oracle queries, guarantees that this
bound is satisfied over the broadest possible range of .Comment: 4 pages plus references, 2 figure
Optimal arbitrarily accurate composite pulse sequences
Implementing a single qubit unitary is often hampered by imperfect control.
Systematic amplitude errors , caused by incorrect duration or
strength of a pulse, are an especially common problem. But a sequence of
imperfect pulses can provide a better implementation of a desired operation, as
compared to a single primitive pulse. We find optimal pulse sequences
consisting of primitive or rotations that suppress such errors
to arbitrary order on arbitrary initial states.
Optimality is demonstrated by proving an lower bound and
saturating it with solutions. Closed-form solutions for arbitrary
rotation angles are given for . Perturbative solutions for any
are proven for small angles, while arbitrary angle solutions are obtained by
analytic continuation up to . The derivation proceeds by a novel
algebraic and non-recursive approach, in which finding amplitude error
correcting sequences can be reduced to solving polynomial equations.Comment: 12 pages, 5 figures, submitted to Physical Review
Hydrogen bonding in C-methylated nitroanilines : the three-dimensional framework structure of 2-methyl-4-nitroaniline
Peer reviewedPublisher PD
Generating extremal neutrino mixing angles with Higgs family symmetries
The existence of maximal and minimal mixing angles in the neutrino mixing
matrix motivates the search for extensions to the Standard Model that may
explain these angles. A previous study (C.I.Low and R.R.Volkas,
Phys.Rev.D68,033007(2003)), began a systematic search to find the minimal
extension to the Standard Model that explains these mixing angles. It was found
that in the minimal extensions to the Standard Model which allow neutrino
oscillations, discrete unbroken lepton family symmetries only generate neutrino
mixing matrices that are ruled out by experiment. This paper continues the
search by investigating all models with two or more Higgs doublets, and an
Abelian family symmetry. It is found that discrete Abelian family symmetries
permit, but cannot explain, maximal atmospheric mixing, however these models
can ensure theta_{13}=0.Comment: Minor modifications, references added, typos corrected. LaTeX, 16
page
- …