2,088 research outputs found
Entanglement distribution for a practical quantum-dot-based quantum processor architecture
We propose a quantum dot (QD) architecture for enabling universal quantum information processing. Quantum registers, consisting of arrays of vertically stacked self-assembled semiconductor QDs, are connected by chains of in-plane self-assembled dots. We propose an entanglement distributor, a device for producing and distributing maximally entangled qubits on demand, communicated through in-plane dot chains. This enables the transmission of entanglement to spatially separated register stacks, providing a resource for the realization of a sizeable quantum processor built from coupled register stacks of practical size. Our entanglement distributor could be integrated into many of the present proposals for self-assembled QD-based quantum computation (QC). Our device exploits the properties of simple, relatively short, spin-chains and does not require microcavities. Utilizing the properties of self-assembled QDs, after distribution the entanglement can be mapped into relatively long-lived spin qubits and purified, providing a flexible, distributed, off-line resource. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
Quantum-enhanced capture of photons using optical ratchet states
Natural and artificial light harvesting systems often operate in a regime
where the flux of photons is relatively low. Besides absorbing as many photons
as possible it is therefore paramount to prevent excitons from annihilation via
photon re-emission until they have undergone an irreversible energy conversion
process. Taking inspiration from photosynthetic antenna structures, we here
consider ring-like systems and introduce a class of states we call ratchets:
excited states capable of absorbing but not emitting light. This allows our
antennae to absorb further photons whilst retaining the excitations from those
that have already been captured. Simulations for a ring of four sites reveal a
peak power enhancement by up to a factor of 35 under ambient conditions owing
to a combination of ratcheting and the prevention of emission through
dark-state population. In the slow extraction limit the achievable power
enhancement due to ratcheting alone exceeds 20%.Comment: major revision with improved model (all data and figures updated
Superabsorption of light via quantum engineering
Almost 60 years ago Dicke introduced the term superradiance to describe a
signature quantum effect: N atoms can collectively emit light at a rate
proportional to N^2. Even for moderate N this represents a significant increase
over the prediction of classical physics, and the effect has found applications
ranging from probing exciton delocalisation in biological systems, to
developing a new class of laser, and even in astrophysics. Structures that
super-radiate must also have enhanced absorption, but the former always
dominates in natural systems. Here we show that modern quantum control
techniques can overcome this restriction. Our theory establishes that
superabsorption can be achieved and sustained in certain simple nanostructures,
by trapping the system in a highly excited state while extracting energy into a
non-radiative channel. The effect offers the prospect of a new class of quantum
nanotechnology, capable of absorbing light many times faster than is currently
possible; potential applications of this effect include light harvesting and
photon detection. An array of quantum dots or a porphyrin ring could provide an
implementation to demonstrate this effect
Universal quantum computation using the discrete time quantum walk
A proof that continuous time quantum walks are universal for quantum
computation, using unweighted graphs of low degree, has recently been presented
by Childs [PRL 102 180501 (2009)]. We present a version based instead on the
discrete time quantum walk. We show the discrete time quantum walk is able to
implement the same universal gate set and thus both discrete and continuous
time quantum walks are computational primitives. Additionally we give a set of
components on which the discrete time quantum walk provides perfect state
transfer.Comment: 9 pages, 10 figures. Updated after referee comments - Section V
expanded and minor changes to other parts of the tex
High-frequency monitoring of nitrogen and phosphorus response in three rural catchments to the end of the 2011–2012 drought in England
This paper uses high-frequency bankside measurements from three catchments selected as part of the UK government-funded Demonstration Test Catchments (DTC) project. We compare the hydrological and hydrochemical patterns during the water year 2011–2012 from the Wylye tributary of the River Avon with mixed land use, the Blackwater tributary of the River Wensum with arable land use and the Newby Beck tributary of the River Eden with grassland land use. The beginning of the hydrological year was unusually dry and all three catchments were in states of drought. A sudden change to a wet summer occurred in April 2012 when a heavy rainfall event affected all three catchments. The year-long time series and the individual storm responses captured by in situ nutrient measurements of nitrate and phosphorus (total phosphorus and total reactive phosphorus) concentrations at each site reveal different pollutant sources and pathways operating in each catchment. Large storm-induced nutrient transfers of nitrogen and or phosphorus to each stream were recorded at all three sites during the late April rainfall event. Hysteresis loops suggested transport-limited delivery of nitrate in the Blackwater and of total phosphorus in the Wylye and Newby Beck, which was thought to be exacerbated by the dry antecedent conditions prior to the storm. The high rate of nutrient transport in each system highlights the scale of the challenges faced by environmental managers when designing mitigation measures to reduce the flux of nutrients to rivers from diffuse agricultural sources. It also highlights the scale of the challenge in adapting to future extreme weather events under a changing climate
Literary and cinematic perspectives on gender studies
This project focuses on gender studies including women, men, and sexual diversity studies. Students explore gender and sexuality in the fields of literature and cinema related to cultural, social, and economic issues in Latin America and Spain. The analysis includes a diverse selection of topics: gender and science, gender and sexuality, gender and minority ethnicities, feminism and diversity, transgender identities, transgender healthcare, lesbian and gay figures and trends, and intersex and culture
Role of correlated two-pion exchange in scattering
A dynamical model for S-- and P--wave correlated (and )
exchange between a kaon and a nucleon is presented, starting from corresponding
amplitudes in the pseudophysical region, which
have been constructed from nucleon, --isobar and hyperon (,
) exchange Born terms and a realistic meson exchange model of the and amplitude. The
contribution in the s--channel is then obtained by performing a dispersion
relation over the unitarity cut. In the --channel, considerable
ambiguities exist, depending on how the dispersion integral is performed. Our
model, supplemented by short range interaction terms, is able to describe
empirical data below pion production threshold in a satisfactory way.Comment: 24 pages, REVTEX, figures available from the author
Shift Towards P Limitation with N Deposition?
Atmospheric nitrogen (N) deposition is altering biogeochemical cycling in forests and interconnected lakes of the northeastern US, and may shift nutrient limitation from N toward other essential elements, such as phosphorus (P). Whether this shift is occurring relative to N deposition gradients across the northeastern US has not been investigated. We used datasets for the northeastern US and the Adirondack sub-region to evaluate whether P limitation is increasing where N deposition is high at two geographic scales, based on N:P mass ratios. Using a model- selection approach, we determined that foliar N for dominant tree species and lake dissolved inorganic N (DIN) increased coincident with increasing N deposition, independent of relationships between foliar N or lake DIN and precipitation or temperature. Foliar P also increased with N deposition across the northeastern US for seven of eight deciduous species, but changed less across the Adirondacks. Foliar N:P therefore declined at the highest levels of N deposition for most deciduous species across the region (remaining nearly constant for most conifers and increasing only for black cherry and hemlock), but increased across all species in the Adirondacks. Ratios between DIN and total P (DIN:TP) in lakes were unrelated to N deposition regionally but increased across the Adirondacks. Thus, nutrient limitation patterns shifted from N toward P for dominant trees, and further toward P for predominantly P-limited lakes, at the sub-regional but not regional scale. For the northeastern US overall, accumulated N deposition may be insufficient to drive nutrient limitation from N toward P; alternatively, elements other than P (e.g., calcium, magnesium) may become limiting as N accumulates. The consistent Adirondack foliar and lake response could provide early indication of shifts toward P limitation within the northeastern US, and together with regional patterns, suggests that foliar chemistry could be a predictor of lake chemistry in the context of N deposition across the region
Hypothesis-driven genome-wide association studies provide novel insights into genetics of reading disabilities
Reading Disability (RD) is often characterized by difficulties in the phonology of the language. While the molecular mechanisms underlying it are largely undetermined, loci are being revealed by genome-wide association studies (GWAS). In a previous GWAS for word reading (Price, 2020), we observed that top single-nucleotide polymorphisms (SNPs) were located near to or in genes involved in neuronal migration/axon guidance (NM/AG) or loci implicated in autism spectrum disorder (ASD). A prominent theory of RD etiology posits that it involves disturbed neuronal migration, while potential links between RD-ASD have not been extensively investigated. To improve power to identify associated loci, we up-weighted variants involved in NM/AG or ASD, separately, and performed a new Hypothesis-Driven (HD)–GWAS. The approach was applied to a Toronto RD sample and a meta-analysis of the GenLang Consortium. For the Toronto sample (n = 624), no SNPs reached significance; however, by gene-set analysis, the joint contribution of ASD-related genes passed the threshold (p~1.45 × 10–2, threshold = 2.5 × 10–2). For the GenLang Cohort (n = 26,558), SNPs in DOCK7 and CDH4 showed significant association for the NM/AG hypothesis (sFDR q = 1.02 × 10–2). To make the GenLang dataset more similar to Toronto, we repeated the analysis restricting to samples selected for reading/language deficits (n = 4152). In this GenLang selected subset, we found significant association for a locus intergenic between BTG3-C21orf91 for both hypotheses (sFDR q < 9.00 × 10–4). This study contributes candidate loci to the genetics of word reading. Data also suggest that, although different variants may be involved, alleles implicated in ASD risk may be found in the same genes as those implicated in word reading. This finding is limited to the Toronto sample suggesting that ascertainment influences genetic associations
Low Efficiency of Homology-Facilitated Illegitimate Recombination during Conjugation in Escherichia coli
Homology-facilitated illegitimate recombination has been described in three naturally competent bacterial species. It permits integration of small linear DNA molecules into the chromosome by homologous recombination at one end of the linear DNA substrate, and illegitimate recombination at the other end. We report that homology-facilitated illegitimate recombination also occurs in Escherichia coli during conjugation with small non-replicative plasmids, but at a low frequency of 3×10−10 per recipient cell. The fate of linear DNA in E. coli is either RecBCD-dependent degradation, or circularisation by ligation, and integration into the chromosome by single crossing-over. We also report that the observed single crossing-overs are recA-dependent, but essentially recBCD, and recFOR independent. This suggests that other, still unknown, proteins may act as mediator for the loading of RecA on DNA during single crossing-over recombination in E. coli
- …