147 research outputs found

    Emergent excitations in a geometrically frustrated magnet

    Full text link
    Frustrated systems are ubiquitous and interesting because their behavior is difficult to predict. Magnetism offers extreme examples in the form of spin lattices where all interactions between spins cannot be simultaneously satisfied. Such geometrical frustration leads to macroscopic degeneracies, and offers the possibility of qualitatively new states of matter whose nature has yet to be fully understood. Here we have discovered how novel composite spin degrees of freedom can emerge from frustrated interactions in the cubic spinel ZnCr2O4. Upon cooling, groups of six spins self-organize into weakly interacting antiferromagnetic loops whose directors, defined as the unique direction along which the spins are aligned parallel or antiparallel, govern all low temperature dynamics. The experimental evidence comes from a measurement of the magnetic form factor by inelastic neutron scattering. While the data bears no resemblance to the atomic form factor for chromium, they are perfectly consistent with the form factor for hexagonal spin loop directors. The hexagon directors are to a first approximation decoupled from each other and hence their reorientations embody the long-sought local zero energy modes for the pyrochlore lattice.Comment: 10 pages, 4 figures upon reques

    Neutron Scattering and Its Application to Strongly Correlated Systems

    Full text link
    Neutron scattering is a powerful probe of strongly correlated systems. It can directly detect common phenomena such as magnetic order, and can be used to determine the coupling between magnetic moments through measurements of the spin-wave dispersions. In the absence of magnetic order, one can detect diffuse scattering and dynamic correlations. Neutrons are also sensitive to the arrangement of atoms in a solid (crystal structure) and lattice dynamics (phonons). In this chapter, we provide an introduction to neutrons and neutron sources. The neutron scattering cross section is described and formulas are given for nuclear diffraction, phonon scattering, magnetic diffraction, and magnon scattering. As an experimental example, we describe measurements of antiferromagnetic order, spin dynamics, and their evolution in the La(2-x)Ba(x)CuO(4) family of high-temperature superconductors.Comment: 31 pages, chapter for "Strongly Correlated Systems: Experimental Techniques", edited by A. Avella and F. Mancin

    Decoherence, Entanglement and Irreversibility in Quantum Dynamical Systems with Few Degrees of Freedom

    Full text link
    This review summarizes and amplifies on recent investigations of coupled quantum dynamical systems in the short wavelength limit. We formulate and attempt to answer three fundamental questions: (i) What drives a dynamical quantum system to behave classically ? (ii) What determines the rate at which two coupled quantum--mechanical systems become entangled ? (iii) How does irreversibility occur in quantum systems with few degrees of freedom ? We embed these three questions in the broader context of the quantum--classical correspondence, which motivates the use of short--wavelength approximations to quantum mechanics such as the trajectory-based semiclassical methods and random matrix theory. Doing so, we propose a novel investigative procedure towards decoherence and the emergence of classicality out of quantumness in dynamical systems coupled to external degrees of freedom. We reproduce known results derived using master equation or Lindblad approaches but also generate novel ones. In particular we show how local exponential instability also affects the temporal evolution of quantum chaotic dynamical systems. We extensively rely on numerical experiments to illustrate our findings and briefly comment on possible extensions to more complex problems involving environments with n≫1n \gg 1 interacting dynamical systems, going beyond the uncoupled harmonic oscillator model of Caldeira and Leggett.Comment: Final version, to appear in Advances in Physic
    • …
    corecore