98 research outputs found

    How Does the Scientific Community Contribute to Gene Ontology?

    Get PDF
    Collaborations between the scientific community and members of the Gene Ontology (GO) Consortium have led to an increase in the number and specificity of GO terms, as well as increasing the number of GO annotations. A variety of approaches have been taken to encourage research scientists to contribute to the GO, but the success of these approaches has been variable. This chapter reviews both the successes and failures of engaging the scientific community in GO development and annotation, as well as, providing motivation and advice to encourage individual researchers to contribute to GO

    Computational analysis of the LRRK2 interactome.

    Get PDF
    LRRK2 was identified in 2004 as the causative protein product of the Parkinson's disease locus designated PARK8. In the decade since then, genetic studies have revealed at least 6 dominant mutations in LRRK2 linked to Parkinson's disease, alongside one associated with cancer. It is now well established that coding changes in LRRK2 are one of the most common causes of Parkinson's. Genome-wide association studies (GWAs) have, more recently, reported single nucleotide polymorphisms (SNPs) around the LRRK2 locus to be associated with risk of developing sporadic Parkinson's disease and inflammatory bowel disorder. The functional research that has followed these genetic breakthroughs has generated an extensive literature regarding LRRK2 pathophysiology; however, there is still no consensus as to the biological function of LRRK2. To provide insight into the aspects of cell biology that are consistently related to LRRK2 activity, we analysed the plethora of candidate LRRK2 interactors available through the BioGRID and IntAct data repositories. We then performed GO terms enrichment for the LRRK2 interactome. We found that, in two different enrichment portals, the LRRK2 interactome was associated with terms referring to transport, cellular organization, vesicles and the cytoskeleton. We also verified that 21 of the LRRK2 interactors are genetically linked to risk for Parkinson's disease or inflammatory bowel disorder. The implications of these findings are discussed, with particular regard to potential novel areas of investigation

    Annotation extensions

    Get PDF
    The specificity of knowledge that Gene Ontology (GO) annotations currently can represent is still restricted by the legacy format of the GO annotation file, a format intentionally designed for simplicity to keep the barriers to entry low and thus encourage initial adoption. Historically, the information that could be captured in a GO annotation was simply the role or location of a gene product, although genetically interacting or binding partners could be specified. While there was no mechanism within the original GO annotation format for capturing additional information about the context of a GO term, such as the target gene of an activity or the location of a molecular function, the long-term vision for the GO Consortium was to provide greater expressivity in its annotations to capture physiologically relevant information. Thus, as a step forwards, the GO Consortium has introduced a new field into the annotation for- mat, annotation extensions, which can be used to capture valuable contextual detail. This provides exper- imentally verified links between gene products and other physiological information that is crucial for accurate analysis of pathway and network data. This chapter will provide a simple overview of annotation extensions, illustrated with examples of their usage, and explain why they are useful for scientists and bioinformaticians alike

    Using Gene Ontology to describe the role of the neurexin-neuroligin-SHANK complex in human, mouse and rat and its relevance to autism

    Get PDF
    People with an autistic spectrum disorder (ASD) display a variety of characteristic behavioral traits, including impaired social interaction, communication difficulties and repetitive behavior. This complex neurodevelopment disorder is known to be associated with a combination of genetic and environmental factors. Neurexins and neuroligins play a key role in synaptogenesis and neurexin-neuroligin adhesion is one of several processes that have been implicated in autism spectrum disorders

    Progress in genetic association studies of plasma lipids.

    Get PDF
    This review summarizes recently published large-scale efforts elucidating the genetic architecture of lipid levels. A supplemental file with all genetic loci is provided for research purposes and we performed bioinformatic analyses of the genetic variants to give an oversight of involved pathways

    Non-coding RNA regulatory networks

    Get PDF
    It is well established that the vast majority of human RNA transcripts do not encode for proteins and that non-coding RNAs regulate cell physiology and shape cellular functions. A subset of them is involved in gene regulation at different levels, from epigenetic gene silencing to post-transcriptional regulation of mRNA stability. Notably, the aberrant expression of many non-coding RNAs has been associated with aggressive pathologies. Rapid advances in network biology indicates that the robustness of cellular processes is the result of specific properties of biological networks such as scale-free degree distribution and hierarchical modularity, suggesting that regulatory network analyses could provide new insights on gene regulation and dysfunction mechanisms. In this study we present an overview of public repositories where non-coding RNA-regulatory interactions are collected and annotated, we discuss unresolved questions for data integration and we recall existing resources to build and analyse networks

    Student biocuration projects as a learning environment

    Get PDF
    BACKGROUND: Bioinformatics is becoming an essential tool for the majority of biological and biomedical researchers. Although bioinformatics data is exploited by academic and industrial researchers, limited focus is on teaching this area to undergraduates, postgraduates and senior scientists. Many scientists are developing their own expertise without formal training and often without appreciating the source of the data they are reliant upon. Some universities do provide courses on a variety of bioinformatics resources and tools, a few also provide biocuration projects, during which students submit data to annotation resources. METHODS: To assess the usefulness and enjoyability of annotation projects a survey was sent to University College London (UCL) students who have undertaken Gene Ontology biocuration projects. RESULTS: Analysis of survey responses suggest that these projects provide students with an opportunity not only to learn about bioinformatics resources but also to improve their literature analysis, presentation and writing skills. CONCLUSIONS: Biocuration student projects provide valuable annotations as well as enabling students to develop a variety of skills relevant to their future careers. It is also hoped that, as future scientists, these students will critically assess their own manuscripts and ensure that these are written with the biocurators of the future in mind

    Using the Gene Ontology to Annotate Key Players in Parkinson's Disease

    Get PDF
    The Gene Ontology (GO) is widely recognised as the gold standard bioinformatics resource for summarizing functional knowledge of gene products in a consistent and computable, information-rich language. GO describes cellular and organismal processes across all species, yet until now there has been a considerable gene annotation deficit within the neurological and immunological domains, both of which are relevant to Parkinson's disease. Here we introduce the Parkinson's disease GO Annotation Project, funded by Parkinson's UK and supported by the GO Consortium, which is addressing this deficit by providing GO annotation to Parkinson's-relevant human gene products, principally through expert literature curation. We discuss the steps taken to prioritise proteins, publications and cellular processes for annotation, examples of how GO annotations capture Parkinson's-relevant information, and the advantages that a topic-focused annotation approach offers to users. Building on the existing GO resource, this project collates a vast amount of Parkinson's-relevant literature into a set of high-quality annotations to be utilized by the research community

    Sequence Ontology terminology for gene regulation

    Get PDF
    The Sequence Ontology (SO) is a structured, controlled vocabulary that provides terms and definitions for genomic annotation. The Gene Regulation Ensemble Effort for the Knowledge Commons (GREEKC) initiative has gathered input from many groups of researchers, including the SO, the Gene Ontology (GO), and gene regulation experts, with the goal of curating information about how gene expression is regulated at the molecular level. Here we discuss recent updates to the SO reflecting current knowledge. We have developed more accurate human-readable terms (also known as classes), including new definitions, and relationships related to the expression of genes. New findings continue to give us insight into the biology of gene regulation, including the order of events, and participants in those events. These updates to the SO support logical reasoning with the current understanding of gene expression regulation at the molecular level

    From zebrafish heart jogging genes to mouse and human orthologs: Using Gene Ontology to investigate mammalian heart development

    Get PDF
    For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer's vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer's vesicle determine asymmetry in the developing heart, the direction of 'heart jogging' and the direction of 'heart looping'. 'Heart jogging' is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward 'jog'. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development. We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging. We found that the human, mouse and zebrafish 'heart jogging orthologs' are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging. This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach
    • …
    corecore