709 research outputs found

    Dynamics of the first-order metamagnetic transition in magnetocaloric La(Fe,Si)(13): Reducing hysteresis

    Get PDF
    The influence of dynamics and sample shape on the magnetic hysteresis in first‐order magnetocaloric metamagnetic LaFe13–xSix with x = 1.4 is studied. In solid‐state magnetic cooling, reducing magnetic and thermal hysteresis is critical for refrigeration cycle efficiency. From magnetization measurements, it is found that the fast field‐rate dependence of the hysteresis can be attributed to extrinsic heating directly related to the thickness of the sample and the thermal contact with the bath. If the field is paused partway through the transition, the subsequent relaxation is strongly dependent on shape due to both demagnetizing fields and thermal equilibration; magnetic coupling between adjacent sample fragments can also be significant. Judicious shaping of the sample can both increase the onset field of the ferromagnetic–paramagnetic (FM–PM) transition but have little effect on the PM–FM onset, suggesting a route to engineer the hysteresis width by appropriate design. In the field‐paused state, the relaxation from one phase to the other slows with increasing temperature, implying that the process is neither thermally activated or athermal; comparison with the temperature dependence of the latent heat strongly suggests that the dynamics reflect the intrinsic free energy difference between the two phases

    Reduction in Physical Match Performance at the Start of the Second Half in Elite Soccer

    Get PDF
    Purpose: Soccer referees' physical match performances at the start of the second half (46-60 min) were evaluated in relation to both the corresponding phase of the first half (0-15 min) and players' performances during the same match periods. Methods: Match analysis data were collected (Prozone, UK) from 12 soccer referees on 152 English Premier League matches during the 2008/09 soccer season. Physical match performance categories for referees and players were total distance, high-speed running distance (speed >5.5 m/s), and sprinting distance (>7.0 m/s). The referees' heart rate was recorded from the start of their warm-up to the end of the match. The referees' average distances (in meters) from the ball and fouls were also calculated. Results: No substantial differences were observed in duration (16:42 ± 2:35 vs 16:27 ± 1:00 min) or intensity (107 ± 11 vs 106 ± 14 beats/ min) of the referees' preparation periods immediately before each half. Physical match performance was reduced during the initial phase of the second half when compared with the first half in both referees (effect sizes-standardized mean differences-0.19 to 0.73) and players (effect sizes 0.20 to 1.01). The degree of the decreased performance was consistent between referees and players for total distance (4.7 m), high-speed running (1.5 m), and sprinting (1.1 m). The referees were closer to the ball (effect size 0.52) during the opening phase the second half. Conclusion: Given the similarity in the referees' preparation periods, it may be that the reduced physical match performances observed in soccer referees during the opening stages of the second half are a consequence of a slower tempo of play

    Caspase-8 binding to cardiolipin in giant unilamellar vesicles provides a functional docking platform for bid

    Get PDF
    Caspase-8 is involved in death receptor-mediated apoptosis in type II cells, the proapoptotic programme of which is triggered by truncated Bid. Indeed, caspase-8 and Bid are the known intermediates of this signalling pathway. Cardiolipin has been shown to provide an anchor and an essential activating platform for caspase-8 at the mitochondrial membrane surface. Destabilisation of this platform alters receptor-mediated apoptosis in diseases such as Barth Syndrome, which is characterised by the presence of immature cardiolipin which does not allow caspase-8 binding. We used a simplified in vitro system that mimics contact sites and/or cardiolipin-enriched microdomains at the outer mitochondrial surface in which the platform consisting of caspase-8, Bid and cardiolipin was reconstituted in giant unilamellar vesicles. We analysed these vesicles by flow cytometry and confirm previous results that demonstrate the requirement for intact mature cardiolipin for caspase-8 activation and Bid binding and cleavage. We also used confocal microscopy to visualise the rupture of the vesicles and their revesiculation at smaller sizes due to alteration of the curvature following caspase-8 and Bid binding. Biophysical approaches, including Laurdan fluorescence and rupture/tension measurements, were used to determine the ability of these three components (cardiolipin, caspase-8 and Bid) to fulfil the minimal requirements for the formation and function of the platform at the mitochondrial membrane. Our results shed light on the active functional role of cardiolipin, bridging the gap between death receptors and mitochondria

    Responsiveness to exercise training in juvenile dermatomyositis: a twin case study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with juvenile dermatomyositis (JDM) often present strong exercise intolerance and muscle weakness. However, the role of exercise training in this disease has not been investigated.</p> <p>Purpose</p> <p>this longitudinal case study reports on the effects of exercise training on a 7-year-old patient with JDM and on her unaffected monozygotic twin sister, who served as a control.</p> <p>Methods</p> <p>Both the patient who was diagnosed with JDM as well as her healthy twin underwent a 16-week exercise training program comprising aerobic and strengthening exercises. We assessed one repetition-maximum (1-RM) leg-press and bench-press strength, balance, mobility and muscle function, blood markers of inflammation and muscle enzymes, aerobic conditioning, and disease activity scores. As a result, the healthy child had an overall greater absolute strength, muscle function and aerobic conditioning compared to her JDM twin pair at baseline and after the trial. However, the twins presented comparable relative improvements in 1-RM bench press, 1-RM leg press, VO<sub>2peak</sub>, and time-to-exhaustion. The healthy child had greater relative increments in low-back strength and handgrip, whereas the child with JDM presented a higher relative increase in ventilatory anaerobic threshold parameters and functional tests. Quality of life, inflammation, muscle damage and disease activity scores remained unchanged.</p> <p>Results and Conclusion</p> <p>this was the first report to describe the training response of a patient with non-active JDM following an exercise training regimen. The child with JDM exhibited improved strength, muscle function and aerobic conditioning without presenting an exacerbation of the disease.</p

    Seasonal changes in patterns of gene expression in avian song control brain regions.

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Photoperiod and hormonal cues drive dramatic seasonal changes in structure and function of the avian song control system. Little is known, however, about the patterns of gene expression associated with seasonal changes. Here we address this issue by altering the hormonal and photoperiodic conditions in seasonally-breeding Gambel's white-crowned sparrows and extracting RNA from the telencephalic song control nuclei HVC and RA across multiple time points that capture different stages of growth and regression. We chose HVC and RA because while both nuclei change in volume across seasons, the cellular mechanisms underlying these changes differ. We thus hypothesized that different genes would be expressed between HVC and RA. We tested this by using the extracted RNA to perform a cDNA microarray hybridization developed by the SoNG initiative. We then validated these results using qRT-PCR. We found that 363 genes varied by more than 1.5 fold (>log(2) 0.585) in expression in HVC and/or RA. Supporting our hypothesis, only 59 of these 363 genes were found to vary in both nuclei, while 132 gene expression changes were HVC specific and 172 were RA specific. We then assigned many of these genes to functional categories relevant to the different mechanisms underlying seasonal change in HVC and RA, including neurogenesis, apoptosis, cell growth, dendrite arborization and axonal growth, angiogenesis, endocrinology, growth factors, and electrophysiology. This revealed categorical differences in the kinds of genes regulated in HVC and RA. These results show that different molecular programs underlie seasonal changes in HVC and RA, and that gene expression is time specific across different reproductive conditions. Our results provide insights into the complex molecular pathways that underlie adult neural plasticity

    Selenoether oxytocin analogues have analgesic properties in a mouse model of chronic abdominal pain

    Get PDF
    Poor oral availability and susceptibility to reduction and protease degradation is a major hurdle in peptide drug development. However, drugable receptors in the gut present an attractive niche for peptide therapeutics. Here we demonstrate, in a mouse model of chronic abdominal pain, that oxytocin receptors are significantly upregulated in nociceptors innervating the colon. Correspondingly, we develop chemical strategies to engineer non-reducible and therefore more stable oxytocin analogues. Chemoselective selenide macrocyclization yields stabilized analogues equipotent to native oxytocin. Ultra-high-field nuclear magnetic resonance structural analysis of native oxytocin and the seleno-oxytocin derivatives reveals that oxytocin has a pre-organized structure in solution, in marked contrast to earlier X-ray crystallography studies. Finally, we show that these seleno-oxytocin analogues potently inhibit colonic nociceptors both in vitro and in vivo in mice with chronic visceral hypersensitivity. Our findings have potentially important implications for clinical use of oxytocin analogues and disulphide-rich peptides in general

    Anthropometric and physical fitness comparisons between Australian and Qatari male sport school athletes

    Get PDF
    Background: The increasing focus on international sporting success has led to many countries introducing sport schools and academies. Limited empirical evidence exists that directly compares student-athletes from different continents. This study investigated whether male Australian and Qatari student-athletes differ in anthropometry, physical fitness and biological maturity. Methods: 150 male student-athletes (72 Qatari, 78 Australian; age = 11.8-18.6 y) completed a fitness testing session involving anthropometric (standing height, sitting height, leg length, body mass, peak height velocity (PHV) measures) and physical capacity (40 m sprint, countermovement jump (CMJ), predicted maximal oxygen uptake (VO2max) tests. Differences were assessed using a one-way multivariate analysis of variance (MANOVA), effect size (Cohen&rsquo;s d) and regression coefficients. Results: The Australian student-athletes possessed a greater standing height and body mass (P &lt; 0.01) at their age at PHV (APHV) and had an increased rate of leg length development (P &lt; 0.05) in contrast to the sitting height of the Qataris (P &lt; 0.01). The Qatari student-athletes had significantly (P &lt; 0.01) faster 40 m sprint times (mean&plusmn;SD: 5.88&plusmn;0.53 vs 6.19&plusmn;0.44 s) and greater CMJ heights (36.9 &plusmn; 7.2 vs 34.0 &plusmn; 6.0 cm) than their Australian counterparts. Although not statistically different, the Qatari student-athletes also matured earlier (APHV: d = 0.35) and had greater aerobic power results (predicted VO2max: d = 0.22). Conclusions: Despite lower stature and body mass values, Qatari student-athletes exhibited physical fitness ascendancy over their Australian counterparts

    Structure and Molecular Evolution of CDGSH Iron-Sulfur Domains

    Get PDF
    The recently discovered CDGSH iron-sulfur domains (CISDs) are classified into seven major types with a wide distribution throughout the three domains of life. The type 1 protein mitoNEET has been shown to fold into a dimer with the signature CDGSH motif binding to a [2Fe-2S] cluster. However, the structures of all other types of CISDs were unknown. Here we report the crystal structures of type 3, 4, and 6 CISDs determined at 1.5 Å, 1.8 Å and 1.15 Å resolution, respectively. The type 3 and 4 CISD each contain one CDGSH motif and adopt a dimeric structure. Although similar to each other, the two structures have permutated topologies, and both are distinct from the type 1 structure. The type 6 CISD contains tandem CDGSH motifs and adopts a monomeric structure with an internal pseudo dyad symmetry. All currently known CISD structures share dual iron-sulfur binding modules and a ÎČ-sandwich for either intermolecular or intramolecular dimerization. The iron-sulfur binding module, the ÎČ-strand N-terminal to the module and a proline motif are conserved among different type structures, but the dimerization module and the interface and orientation between the two iron-sulfur binding modules are divergent. Sequence analysis further shows resemblance between CISD types 4 and 7 and between 1 and 2. Our findings suggest that all CISDs share common ancestry and diverged into three primary folds with a characteristic phylogenetic distribution: a eukaryote-specific fold adopted by types 1 and 2 proteins, a prokaryote-specific fold adopted by types 3, 4 and 7 proteins, and a tandem-motif fold adopted by types 5 and 6 proteins. Our comprehensive structural, sequential and phylogenetic analysis provides significant insight into the assembly principles and evolutionary relationship of CISDs

    DNA Electrophoretic Migration Patterns Change after Exposure of Jurkat Cells to a Single Intense Nanosecond Electric Pulse

    Get PDF
    Intense nanosecond pulsed electric fields (nsPEFs) interact with cellular membranes and intracellular structures. Investigating how cells respond to nanosecond pulses is essential for a) development of biomedical applications of nsPEFs, including cancer therapy, and b) better understanding of the mechanisms underlying such bioelectrical effects. In this work, we explored relatively mild exposure conditions to provide insight into weak, reversible effects, laying a foundation for a better understanding of the interaction mechanisms and kinetics underlying nsPEF bio-effects. In particular, we report changes in the nucleus of Jurkat cells (human lymphoblastoid T cells) exposed to single pulses of 60 ns duration and 1.0, 1.5 and 2.5 MV/m amplitudes, which do not affect cell growth and viability. A dose-dependent reduction in alkaline comet-assayed DNA migration is observed immediately after nsPEF exposure, accompanied by permeabilization of the plasma membrane (YO-PRO-1 uptake). Comet assay profiles return to normal within 60 minutes after pulse delivery at the highest pulse amplitude tested, indicating that our exposure protocol affects the nucleus, modifying DNA electrophoretic migration patterns
    • 

    corecore