7,276 research outputs found

    Total and Elastic Cross‐Sections at High Energy

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87473/2/235_1.pd

    Developing the Technique of Measurements of Magnetic Field in the CMS Steel Yoke Elements With Flux-Loops and Hall Probes

    Full text link
    Compact muon solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN large hadron collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in theCMSdetector, including the large ferromagnetic parts of the yoke, is required. To measure the field in and around ferromagnetic parts, a set of flux-loops and Hall probe sensors will be installed on several of the steel pieces. Fast discharges of the solenoid during system commissioning tests will be used to induce voltages in the flux-loops that can be integrated to measure the flux in the steel at full excitation of the solenoid. The Hall sensors will give supplementary information on the axial magnetic field and permit estimation of the remanent field in the steel after the fast discharge. An experimental R&D program has been undertaken, using a test flux-loop, two Hall sensors, and sample disks made from the same construction steel used for the CMS magnet yoke. A sample disc, assembled with the test flux-loop and the Hall sensors, was inserted between the pole tips of a dipole electromagnet equipped with a computer-controlled power supply to measure the excitation of the steel from full saturation to zero field. The results of the measurements are presented and discussed.Comment: 6 pages, 8 figures, 6 reference

    Measuring the Magnetic Flux Density in the CMS Steel Yoke

    Full text link
    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. Accurate characterization of the magnetic field everywhere in the CMS detector is required. To measure the field in and around the steel, a system of 22 flux-loops and 82 3-D Hall sensors is installed on the return yoke blocks. Fast discharges of the solenoid (190 s time-constant) made during the CMS magnet surface commissioning test at the solenoid central fields of 2.64, 3.16, 3.68 and 4.01 T were used to induce voltages in the flux-loops. The voltages are measured on-line and integrated off-line to obtain the magnetic flux in the steel yoke close to the muon chambers at full excitations of the solenoid. The 3-D Hall sensors installed on the steel-air interfaces give supplementary information on the components of magnetic field and permit to estimate the remanent field in steel to be added to the magnetic flux density obtained by the voltages integration. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The results of the measurements and calculations are presented, compared and discussed.Comment: 9 pages, 7 figures, 16 references, presented at the III International Conference on Superconductivity and Magnetism (ICSM-2012), Kumburgaz, Istanbul, Turkey, 29 April - 4 May 201

    Measuring the Magnetic Flux Density with Flux Loops and Hall Probes in the CMS Magnet Flux Return Yoke

    Full text link
    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10,000-ton return yoke made of construction steel. The flux return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. To measure the field in and around the steel, a system of 22 flux loops and 82 3-D Hall sensors is installed on the return yoke blocks. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume that was measured with the field-mapping machine. The voltages induced in the flux loops by the magnetic flux changing during the CMS magnet standard ramps down are measured with six 16-bit DAQ modules. The off-line integration of the induced voltages reconstructs the magnetic flux density in the yoke steel blocks at the operational magnet current of 18.164 kA. The results of the flux loop measurements during three magnet ramps down are presented and discussed.Comment: 3 pages, 6 figures, presented at the IEEE Nuclear Science Symposium 2016 (NSS) in Strasbourg, France on November 3, 2016. arXiv admin note: text overlap with arXiv:1605.0877

    Flux Loop Measurements of the Magnetic Flux Density in the CMS Magnet Yoke

    Full text link
    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10,000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. To measure the field in and around the steel, a system of 22 flux loops and 82 3-D Hall sensors is installed on the return yoke blocks. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The first attempt is made to measure the magnetic flux density in the steel blocks of the CMS magnet yoke using the standard magnet discharge with the current ramp down speed of 1.5 A/s.Comment: 7 pages, 5 figures, presented at ISCM2016 - 5th International Conference on Superconductivity and Magnetism on April 28, 2016 at Fethiye, Turke

    Validation of the CMS Magnetic Field Map

    Full text link
    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10,000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. To measure the field in and around the steel, a system of 22 flux loops and 82 3-D Hall sensors is installed on the return yoke blocks. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The magnetic field description is compared with the measurements and discussed.Comment: 7 pages, 5 figures, presented at 4th International Conference on Superconductivity and Magnetism 2014, April 27 - May 2, 2014, Antalya, Turkey. arXiv admin note: substantial text overlap with arXiv:1605.08778; text overlap with arXiv:1212.165

    3D Magnetic Analysis of the CMS Magnet

    Get PDF
    The CMS magnetic system consists of a super-conducting solenoid coil, 12.5 m long and 6 m free bore diameter, and of an iron flux-return yoke, which includes the central barrel, two end-caps and the ferromagnetic parts of the hadronic forward calorimeter. The magnetic flux density in the center of the solenoid is 4 T. To carry out the magnetic analysis of the CMS magnetic system, several 3D models were developed to perform magnetic field and force calculations using the Vector Fields code TOSCA. The analysis includes a study of the general field behavior, the calculation of the forces on the coil generated by small axial, radial displacements and angular tilts, the calculation of the forces on the ferromagnetic parts, the calculation of the fringe field outside the magnetic system, and a study of the field level in the chimneys for the current leads and the cryogenic lines. A procedure to reconstruct the field inside a cylindrical volume starting from the values of the magnetic flux density on the cylinder surface is considered. Special TOSCA-GEANT interface tools have being developed to input the calculated magnetic field into the detector simulation package.Comment: 4 pages, 6 figures, 1 equation, 14 reference

    Another chance? Concerns about inequality, support for the European Union and further European integration

    Get PDF
    Following the 2007–2008 financial crisis, it was expected that the economic downturn and the widening of economic disparities would produce lower support for the European Union (EU) and its continued integration. Using the 2009 European Election Study (EES) data in 27 EU member states, we find that citizens who see greater economic instability and insecurity, regardless of their current economic status, lower their support for the EU as it is but increase their support for continuing integration. Substantively, this suggests that EU citizens may offer the EU another chance to tackle this timely issue and counterbalance market-generated inequality

    Measurement of the CMS Magnetic Field

    Full text link
    The measurement of the magnetic field in the tracking volume inside the superconducting coil of the Compact Muon Solenoid (CMS) detector under construction at CERN is done with a fieldmapper designed and produced at Fermilab. The fieldmapper uses 10 3-D B-sensors (Hall probes) developed at NIKHEF and calibrated at CERN to precision 0.05% for a nominal 4 T field. The precise fieldmapper measurements are done in 33840 points inside a cylinder of 1.724 m radius and 7 m long at central fields of 2, 3, 3.5, 3.8, and 4 T. Three components of the magnetic flux density at the CMS coil maximum excitation and the remanent fields on the steel-air interface after discharge of the coil are measured in check-points with 95 3-D B-sensors located near the magnetic flux return yoke elements. Voltages induced in 22 flux-loops made of 405-turn installed on selected segments of the yoke are sampled online during the entire fast discharge (190 s time-constant) of the CMS coil and integrated offline to provide a measurement of the initial magnetic flux density in steel at the maximum field to an accuracy of a few percent. The results of the measurements made at 4 T are reported and compared with a three-dimensional model of the CMS magnet system calculated with TOSCA.Comment: 4 pages, 5 figures, 15 reference
    • 

    corecore