63 research outputs found
Effects of TGF-β1 and IGF-1 on proliferation of human nucleus pulposus cells in medium with different serum concentrations
BACKGROUND: The low proliferative viability of human nucleus pulposus(NP) cells is considered as a cause of intervertebral discs degeneration. Growth factors, such as TGF-β1 and IGF-1, have been implicated in cell proliferation and matrix synthesis. OBJECTIVE: To investigate the dose-response and time-course effect of transforming growth factorβ1(TGF-β1) and insulin-like growth factor-1(IGF-1) on proliferation of NP cells. STUDY DESIGN: 3-(4,5-dimethylthiazolyl)-2,5-diphenyl-tetrazolium bromide (MTT) is reduced by dehydrogenase in mitochondria of live cells. The proliferative viability of cells corresponds to the amount of MTT reduced, which is measured with an enzyme-linked immunosorbent assay plate reader. In this study, we assessed dose- and time-dependent effects of NP cells to TGF-β1 and IGF-1 in medium with different serum concentrations by MTT assay. METHODS: After release of informed consent, tissue samples of NP were obtained from anterior surgical procedures performed on five donors with idiopathic scoliosis. Isolated cells were cultured in F12 medium supplemented with 10% fetal bovine serum(FBS). Cells were seeded in 96-well plates at 1 × 10(3 )cells/well. After synchronization, medium was replaced by F12 containing 1% or 10% FBS with either single or combination of TGF-β1 and IGF-1. Dose-response and time-course effect were examined by MTT assay. RESULTS: In the presence of 1% FBS, the response to IGF-1 was less striking, whereas TGF-β1 had a remarkably stimulating effect on cell proliferation. In 10% FBS, both of the two growth factors had statistical significant mitogenic effects, especially TGF-β1. The dose-dependent effect of TGF and IGF on cell proliferation was found within different concentrations of each growth factor(TGF-β1 1–10 μg/L, IGF-1 10–100 μg/L). The time-course effect showed a significant elevation three days later. CONCLUSION: TGF-β1 and IGF-1 were efficient to stimulate cell proliferation of human NP cells in vitro with a dose- and time-dependent manner. These results support the therapeutic potentials of the two growth factors in the treatment of disc degeneration
Pilot phase III immunotherapy study in early-stage breast cancer patients using oxidized mannan-MUC1 [ISRCTN71711835]
INTRODUCTION: Mucin 1 (MUC1) is a high molecular weight glycoprotein overexpressed on adenocarcinoma cells and is a target for immunotherapy protocols. To date, clinical trials against MUC1 have included advanced cancer patients. Herein, we report a trial using early stage breast cancer patients and injection of oxidized mannan-MUC1. METHOD: In a randomized, double-blind study, 31 patients with stage II breast cancer and with no evidence of disease received subcutaneous injections of either placebo or oxidized mannan-MUC1, to immunize against MUC1 and prevent cancer reoccurrence/metastases. Twenty-eight patients received the full course of injections of either oxidized mannan-MUC1 or placebo. Survival and immunological assays were assessed. RESULTS: After more than 5.5 years had elapsed since the last patient began treatment (8.5 years from the start of treatment of the first patient), the recurrence rate in patients receiving the placebo was 27% (4/15; the expected rate of recurrence in stage II breast cancer); those receiving immunotherapy had no recurrences (0/16), and this finding was statistically significant (P = 0.0292). Of the patients receiving oxidized mannan-MUC1, nine out of 13 had measurable antibodies to MUC1 and four out of 10 had MUC1-specific T cell responses; none of the placebo-treated patients exhibited an immune response to MUC1. CONCLUSION: The results suggest that, in early breast cancer, MUC1 immunotherapy is beneficial, and that a larger phase III study should be undertaken
Overexpression and altered glycosylation of MUC1 in malignant mesothelioma
Current interest in the MUC1/EMA mucin relates to its role in malignancy, and its potential as a therapeutic target. MUC1/EMA expression has been observed in the majority of epithelioid mesotheliomas. However, little is known of the characteristics of MUC1/EMA in mesothelioma. Herein, we studied the cell surface and soluble expression of the MUC1/EMA glycoprotein, and determined the mRNA and genomic expression profiles in mesothelioma. We found that the anti-MUC1 antibody, E29, was the most diagnostically useful of seven antibody clones examined with a sensitivity of 84% (16 out of 19 cases) and no false positive results. MUC1 mRNA expression was significantly higher in mesothelioma samples than in benign mesothelial cells. No amplification of the MUC1 gene was observed by FISH. Seven of 9 mesothelioma samples expressed MUC1-secreted mRNA isoform in addition to the archetypal MUC1/transmembrane form. CA15.3 (soluble MUC1) levels were significantly higher in the serum of mesothelioma patients than in healthy controls but were not significantly different to levels in patients with benign asbestos-related disease. CA15-3 in effusions could differentiate malignant from benign effusions but were not specific for mesothelioma. Thus, as in other cancers, alterations in MUC1 biology occur in mesothelioma and these results suggest that specific MUC1 characteristics may be useful for mesothelioma diagnosis and should also be investigated as a potential therapeutic target
Recommended from our members
Using time perception to explore implicit sensitivity to emotional stimuli in autism spectrum disorder
Establishing whether implicit responses to emotional cues are intact in autism spectrum disorder (ASD) is fundamental to ascertaining why their emotional understanding is compromised. We used a temporal bisection task to assess for responsiveness to face and wildlife images that varied in emotional salience. There were no significant differences between an adult ASD and comparison group, with both showing implicit overestimation of emotional stimuli. Further, there was no correlation between overestimation of emotional stimuli and autistic traits in undergraduate students. These data do not suggest a fundamental insensitivity to the arousing content of emotional images in ASD, or in individuals with a high degree of autistic traits. The findings have implications for understanding how emotional stimuli are processed in ASD
The effect of an autologous cellular gel-matrix integrated implant system on wound healing
<p>Abstract</p> <p>Background</p> <p>This manuscript reports the production and preclinical studies to examine the tolerance and efficacy of an autologous cellular gel-matrix integrated implant system (IIS) aimed to treat full-thickness skin lesions.</p> <p>Methods</p> <p>The best concentration of fibrinogen and thrombin was experimentally determined by employing 28 formula ratios of thrombin and fibrinogen and checking clot formation and apparent stability. IIS was formed by integrating skin cells by means of the <it>in situ </it>gelification of fibrin into a porous crosslinked scaffold composed of chitosan, gelatin and hyaluronic acid. The <it>in vitro </it>cell proliferation within the IIS was examined by the MTT assay and PCNA expression. An experimental rabbit model consisting of six circular lesions was utilized to test each of the components of the IIS. Then, the IIS was utilized in an animal model to cover a 35% body surface full thickness lesion.</p> <p>Results</p> <p>The preclinical assays in rabbits demonstrated that the IIS was well tolerated and also that IIS-treated rabbit with lesions of 35% of their body surface, exhibited a better survival rate (p = 0,06).</p> <p>Conclusion</p> <p>IIS should be further studied as a new wound dressing which shows promising properties, being the most remarkable its good biological tolerance and cell growth promotion properties.</p
BAMBI Regulates Angiogenesis and Endothelial Homeostasis through Modulation of Alternative TGFβ Signaling
BACKGROUND: BAMBI is a type I TGFβ receptor antagonist, whose in vivo function remains unclear, as BAMBI(-/-) mice lack an obvious phenotype. METHODOLOGY/PRINCIPAL FINDINGS: Identifying BAMBI's functions requires identification of cell-specific expression of BAMBI. By immunohistology we found BAMBI expression restricted to endothelial cells and by electron microscopy BAMBI(-/-) mice showed prominent and swollen endothelial cells in myocardial and glomerular capillaries. In endothelial cells over-expression of BAMBI reduced, whereas knock-down enhanced capillary growth and migration in response to TGFβ. In vivo angiogenesis was enhanced in matrigel implants and in glomerular hypertrophy after unilateral nephrectomy in BAMBI(-/-) compared to BAMBI(+/+) mice consistent with an endothelial phenotype for BAMBI(-/-) mice. BAMBI's mechanism of action in endothelial cells was examined by canonical and alternative TGFβ signaling in HUVEC with over-expression or knock-down of BAMBI. BAMBI knockdown enhanced basal and TGFβ stimulated SMAD1/5 and ERK1/2 phosphorylation, while over-expression prevented both. CONCLUSIONS/SIGNIFICANCE: Thus we provide a first description of a vascular phenotype for BAMBI(-/-) mice, and provide in vitro and in vivo evidence that BAMBI contributes to endothelial and vascular homeostasis. Further, we demonstrate that in endothelial cells BAMBI interferes with alternative TGFβ signaling, most likely through the ALK 1 receptor, which may explain the phenotype observed in BAMBI(-/-) mice. This newly described role for BAMBI in regulating endothelial function has potential implications for understanding and treating vascular disease and tumor neo-angiogenesis
- …