147 research outputs found

    Measurements of total alkalinity and inorganic dissolved carbon in the Atlantic Ocean and adjacent Southern Ocean between 2008 and 2010

    Get PDF
    Water column dissolved inorganic carbon and total alkalinity were measured during five hydrographic sections in the Atlantic Ocean and Drake Passage. The work was funded through the Strategic Funding Initiative of the UK's Oceans2025 programme, which ran from 2007 to 2012. The aims of this programme were to establish the regional budgets of natural and anthropogenic carbon in the North Atlantic, the South Atlantic, and the Atlantic sector of the Southern Ocean, as well as the rates of change of these budgets. This paper describes in detail the dissolved inorganic carbon and total alkalinity data collected along east–west sections at 47° N to 60° N, 24.5° N, and 24° S in the Atlantic and across two Drake Passage sections. Other hydrographic and biogeochemical parameters were measured during these sections, and relevant standard operating procedures are mentioned here. Over 95% of dissolved inorganic carbon and total alkalinity samples taken during the 24.5° N, 24° S, and the Drake Passage sections were analysed onboard and subjected to a first-level quality control addressing technical and analytical issues. Samples taken along 47° N to 60° N were analysed and subjected to quality control back in the laboratory. Complete post-cruise second-level quality control was performed using cross-over analysis with historical data in the vicinity of measurements, and data were submitted to the CLIVAR and Carbon Hydrographic Data Office (CCHDO), the Carbon Dioxide Information Analysis Center (CDIAC) and and will be included in the Global Ocean Data Analyses Project, version 2 (GLODAP 2), the upcoming update of Key et al. (2004)

    LHC Transverse Feedback System and its Hardware Commissioning

    Get PDF
    A powerful transverse feedback system ("Damper") has been installed in LHC. It will stabilise coupled bunch instabilities in a frequency range from 3 kHz to 20 MHz and at the same time damp injection oscillations originating from steering errors and injection kicker ripple. The transverse damper can also be used as an exciter for purposes of abort gap cleaning or tune measurement. The power and lowlevel systems layouts are described along with results from the hardware commissioning. The achieved performance is compared with earlier predictions and requirements for injection damping and instability control

    LHC Transverse Feedback System: First Results of Commissionning

    Get PDF
    A powerful transverse feedback system ("Damper") has been installed in LHC. It will stabilise the high intensity beam against coupled bunch transverse instabilities in a frequency range from 3 kHz to 20 MHz and at the same time damp injection oscillations originating from steering errors and injection kicker ripple. The LHC Damper can also be used as means of exciting transverse oscillations for the purposes of abort gap cleaning and tune measurement. The LHC Damper includes 4 feedback systems on 2 circulating beams (in other words one feedback system per beam and plane). Every feedback system consists of 4 electrostatic kickers, 4 push-pull wide band power amplifiers, 8 preamplifiers, two digital processing units and 2 beam position monitors with low-level electronics. The power and low-level subsystem layout is described along with first results from the commissioning of 16 power amplifiers and 16 electrostatic kickers located in the LHC tunnel. The achieved performance is compared with earlier predictions and requirements for injection damping and instability control. Requirements and first measurements of the performance of the power and low-level subsystems are summarized

    On staying grounded and avoiding Quixotic dead ends

    Get PDF
    The 15 articles in this special issue on The Representation of Concepts illustrate the rich variety of theoretical positions and supporting research that characterize the area. Although much agreement exists among contributors, much disagreement exists as well, especially about the roles of grounding and abstraction in conceptual processing. I first review theoretical approaches raised in these articles that I believe are Quixotic dead ends, namely, approaches that are principled and inspired but likely to fail. In the process, I review various theories of amodal symbols, their distortions of grounded theories, and fallacies in the evidence used to support them. Incorporating further contributions across articles, I then sketch a theoretical approach that I believe is likely to be successful, which includes grounding, abstraction, flexibility, explaining classic conceptual phenomena, and making contact with real-world situations. This account further proposes that (1) a key element of grounding is neural reuse, (2) abstraction takes the forms of multimodal compression, distilled abstraction, and distributed linguistic representation (but not amodal symbols), and (3) flexible context-dependent representations are a hallmark of conceptual processing

    Empathy, engagement, entrainment: the interaction dynamics of aesthetic experience

    Get PDF
    A recent version of the view that aesthetic experience is based in empathy as inner imitation explains aesthetic experience as the automatic simulation of actions, emotions, and bodily sensations depicted in an artwork by motor neurons in the brain. Criticizing the simulation theory for committing to an erroneous concept of empathy and failing to distinguish regular from aesthetic experiences of art, I advance an alternative, dynamic approach and claim that aesthetic experience is enacted and skillful, based in the recognition of others’ experiences as distinct from one’s own. In combining insights from mainly psychology, phenomenology, and cognitive science, the dynamic approach aims to explain the emergence of aesthetic experience in terms of the reciprocal interaction between viewer and artwork. I argue that aesthetic experience emerges by participatory sense-making and revolves around movement as a means for creating meaning. While entrainment merely plays a preparatory part in this, aesthetic engagement constitutes the phenomenological side of coupling to an artwork and provides the context for exploration, and eventually for moving, seeing, and feeling with art. I submit that aesthetic experience emerges from bodily and emotional engagement with works of art via the complementary processes of the perception–action and motion–emotion loops. The former involves the embodied visual exploration of an artwork in physical space, and progressively structures and organizes visual experience by way of perceptual feedback from body movements made in response to the artwork. The latter concerns the movement qualities and shapes of implicit and explicit bodily responses to an artwork that cue emotion and thereby modulate over-all affect and attitude. The two processes cause the viewer to bodily and emotionally move with and be moved by individual works of art, and consequently to recognize another psychological orientation than her own, which explains how art can cause feelings of insight or awe and disclose aspects of life that are unfamiliar or novel to the viewer

    Cystatin C: A Candidate Biomarker for Amyotrophic Lateral Sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurologic disease characterized by progressive motor neuron degeneration. Clinical disease management is hindered by both a lengthy diagnostic process and the absence of effective treatments. Reliable panels of diagnostic, surrogate, and prognostic biomarkers are needed to accelerate disease diagnosis and expedite drug development. The cysteine protease inhibitor cystatin C has recently gained interest as a candidate diagnostic biomarker for ALS, but further studies are required to fully characterize its biomarker utility. We used quantitative enzyme-linked immunosorbent assay (ELISA) to assess initial and longitudinal cerebrospinal fluid (CSF) and plasma cystatin C levels in 104 ALS patients and controls. Cystatin C levels in ALS patients were significantly elevated in plasma and reduced in CSF compared to healthy controls, but did not differ significantly from neurologic disease controls. In addition, the direction of longitudinal change in CSF cystatin C levels correlated to the rate of ALS disease progression, and initial CSF cystatin C levels were predictive of patient survival, suggesting that cystatin C may function as a surrogate marker of disease progression and survival. These data verify prior results for reduced cystatin C levels in the CSF of ALS patients, identify increased cystatin C levels in the plasma of ALS patients, and reveal correlations between CSF cystatin C levels to both ALS disease progression and patient survival

    Neuropsychological Sequelae of Carotid Angioplasty with Stent Placement: Correlation with Ischemic Lesions in Diffusion Weighted Imaging

    Get PDF
    BACKGROUND AND PURPOSE: Few studies investigated the neuropsychological outcome after carotid angioplasty with stent placement (CAS), yielding partially inconsistent results. The present investigation evaluated the effect of CAS in patients with high-grade stenosis and assessed the predictive value of ischemic lesion number for postinterventional cognitive deterioration. METHODS: 22 patients were tested neuropsychologically before and six weeks after CAS. Cerebral ischemic changes were assessed with diffusion weighted imaging (DWI) prior to and after angioplasty. RESULTS: Pre- to postinterventional cognitive performance improved significantly in terms of verbal memory (t = -2.30; p<0.05), whereas significant deterioration was noted regarding verbal memory span (t = 2.31; p<0.05). 8 (36%) persons conformed to the criteria of cognitive improvement. 6 patients (27%) were postinterventionally classified as having deficits. Analysis yielded no statistically significant correlations between lesion quantity and cognitive change. CONCLUSION: Both improvement and deterioration of cognitive functioning was observed in our collective of patients, leaving the neuropsychological outcome after percutaneous transluminal angioplasty unpredictable in individual cases. The presence of acute ischemic lesions on DWI was found to be not tightly associated with cognitive dysfunction after CAS

    Coh-Metrix: Analysis of text on cohesion and language

    Full text link
    Advances in computational linguistics and discourse processing have made it possible to automate many language- and text-processing mechanisms. We have developed a computer tool called Coh-Metrix, which analyzes texts on over 200 measures of cohesion, language, and readability. Its modules use lexicons, part-of-speech classifiers, syntactic parsers, templates, corpora, latent semantic analysis, and other components that are widely used in computational linguistics. After the user enters an English text, CohMetrix returns measures requested by the user. In addition, a facility allows the user to store the results of these analyses in data files (such as Text, Excel, and SPSS). Standard text readability formulas scale texts on difficulty by relying on word length and sentence length, whereas Coh-Metrix is sensitive to cohesion relations, world knowledge, and language and discourse characteristics
    • …
    corecore