53 research outputs found

    New features of sialylated lipo-oligosaccharide structures in Campylobacter jejuni

    Get PDF

    New features of sialylated lipo-oligosaccharide structures in Campylobacter jejuni

    Get PDF

    Are bacteriophage defence and virulence two sides of the same coin in Campylobacter jejuni?

    Get PDF
    Abstract The continuous battle for survival in the environment has led to the development or acquisition of sophisticated defence systems in bacteria. These defence systems have contributed to the survival of the bacterial species in the environment for millions of years. Some systems appear to have evolved in a number of pathogenic bacteria towards a role in virulence and host immune evasion. Recently, different bacterial cell envelope components from diverse bacterial species have been linked not only to bacteriophage defence, but also to virulence features. In the present review we focus specifically on the bacterial cell envelopeexpressed sialic-acid-containing LOS (lipo-oligosaccharide) structures and Type II CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) genes that both occur in specific Gramnegative pathogens. In Campylobacter jejuni circumstantial evidence points at a potential intertwined dual function between sialylated LOS structures and subtype II-C CRISPR-Cas, i.e. in phage defence and virulence. In the present review we discuss whether a dual functionality of sialylated LOS and subtype II-C CRISPR-Cas is exclusive to C. jejuni only or could be more widespread within the group of Type II CRISPR-Cas-harbouring bacteria. We conclude from the literature that, at least in C. jejuni, circumstantial evidence exists for a complex intertwined dual functionality between sialylated LOS and Type II CRISPR-Cas, and that other bacteria show similar genomic signatures

    Streptococcus pneumoniae enhances human respiratory syncytial virus infection in vitro and in vivo

    Get PDF
    Human respiratory syncytial virus (HRSV) and Streptococcus pneumoniae are important causative agents of respiratory tract infections. Both pathogens are associated with seasonal disease outbreaks in the pediatric population, and can often be detected simultaneously in infants hospitalized with bronchiolitis or pneumonia. It has been described that respiratory virus infections may predispose for bacterial superinfections, resulting in severe disease. However, studies on the influence of bacterial colonization of the upper respiratory tract on the pathogenesis of subsequent respiratory virus infections are scarce. Here, we have investigated whether pneumococcal colonization enhances subsequent HRSV infection. We used a newly generated recombinant subgroup B HRSV strain that expresses enhanced green fluorescent protein and pneumococcal isolates obtained from healthy children in disease-relevant in vitro and in vivo model systems. Three pneumococcal strains specifically enhanced in vitro HRSV infection of primary well-differentiated normal human bronchial epithelial cells grown at air-liquid interface, whereas two other strains did not. Since previous studies reported that bacterial neuraminidase enhanced HRSV infection in vitro, we measured pneumococcal neuraminidase activity in these cultures but found no correlation with the observed infection enhancement in our model. Subsequently, a selection of pneumococcal strains was used to induce nasal colonization of cotton rats, the best available small animal model for HRSV. Intranasal HRSV infection three days later resulted in strain-specific enhancement of HRSV replication in vivo. One S. pneumoniae strain enhanced HRSV both in vitro and in vivo, and was also associated with enhanced syncytium formation in vivo. However, neither pneumococci nor HRSV were found to spread from the upper to the lower respiratory tract, and neither pathogen was transmitted to naive cage mates by direct contact. These results demonstrate that pneumococcal colonization can enhance subsequent HRSV infection, and provide tools for additional mechanistic and intervention studies

    Campylobacter jejuni Cas9 Modulates the Transcriptome in Caco-2 Intestinal Epithelial Cells

    Get PDF
    The zoonotic human pathogen Campylobacter jejuni is known for its ability to induce DNA-damage and cell death pathology in humans. The molecular mechanism behind this phenomenon involves nuclear translocation by Cas9, a nuclease in C. jejuni (CjeCas9) that is the molecular marker of the Type II CRISPR-Cas system. However, it is unknown via which cellular pathways CjeCas9 drives human intestinal epithelial cells into cell death. Here, we show that CjeCas9 released by C. jejuni during the infection of Caco-2 human intestinal epithelial cells directly modulates Caco-2 transcriptomes during the first four hours of infection. Specifically, our results reveal that CjeCas9 activates DNA damage (p53, ATM (Ataxia Telangiectasia Mutated Protein)), pro-inflammatory (NF-κB (Nuclear factor-κB)) signaling and cell death pathways, driving Caco-2 cell

    CRISPR-CAS diversity in clinical salmonella enterica serovar typhi isolates from South Asian countries

    Get PDF
    Typhoid fever, caused by Salmonella enterica serovar Typhi (S. Typhi), is a global health concern and its treatment is problematic due to the rise in antimicrobial resistance (AMR). Rapid detection of patients infected with AMR positive S. Typhi is, therefore, crucial to prevent further spreading. Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated genes (CRISPR-Cas), is an adaptive immune system that initially was used for typing purposes. Later, it was discovered to play a role in defense against phages and plasmids, including ones that carry AMR genes, and, at present, it is being explored for its usage in diagnostics. Despite the availability of whole-genome sequences (WGS), very few studied the CRISPR-Cas system of S. Typhi, let alone in typing purposes or relation to AMR. In the present study, we analyzed the CRISPR-Cas system of S. Typhi using WGS data of 1059 isolates obtained from Bangladesh, India, Nepal, and Pakistan in combination with demographic data and AMR status. Our results reveal that the S. Typhi CRISPR loci can be classified into two groups: A (evidence level >2) and B (evidence level ≤2), in which we identified a total of 47 unique spacers and 15 unique direct repeats. Further analysis of the identified spacers and repeats demonstrated specific patterns that harbored significant associations with genotype, demographic characteristics, and AMR status, thus raising the possibility of their usage as biomarkers. Potential spacer targets were identified and, interestingly, the phage-targeting spacers belonged to the group-A and plasmid-targeting spacers to the group-B CRISPR loci. Further analyses of the spacer targets led to the identification of an S. Typhi protospacer adjacent motif (PAM) sequence, TTTCA/T. New cas-genes known as DinG, DEDDh, and WYL were also discovered in the S. Typhi genome. However, a specific variant of the WYL gene was only identified in the extensively drug-resistant (XDR) lineage from Pakistan and ciprofloxacin-resistant lineage from Bangladesh. From this work, we conclude that there are strong correlations between variations identified in the S. Typhi CRISPR-Cas system and endemic AMR positive S. Typhi isolates

    Guide-free Cas9 from pathogenic Campylobacter jejuni bacteria causes severe damage to DNA

    Get PDF
    CRISPR-Cas9 systems are enriched in human pathogenic bacteria and have been linked to cytotoxicity by an unknown mechanism. Here, we show that upon infection of human cells, Campylobacter jejuni secretes its Cas9 (CjeCas9) nuclease into their cytoplasm. Next, a native nuclear localization signal enables CjeCas9 nuclear entry, where it catalyzes metal-dependent nonspecific DNA cleavage leading to cell death. Compared to CjeCas9, native Cas9 of Streptococcus pyogenes (SpyCas9) is more suitable for guide-dependent editing. However, in human cells, native SpyCas9 may still cause some DNA damage, most likely because of its ssDNA cleavage activity. This side effect can be completely prevented by saturation of SpyCas9 with an appropriate guide RNA, which is only partially effective for CjeCas9. We conclude that CjeCas9 plays an active role in attacking human cells rather than in viral defense. Moreover, these unique catalytic features may therefore make CjeCas9 less suitable for genome editing applications

    New futures of sialyated lipo-oligosaccharide structures in campylobacter jejuni

    No full text
    The zoonotic human enteric pathogen Campylobacter jejuni is acquired by humans through contaminated water, poultry, shellfish and pets 1. Motility, chemotaxis, glycosylation and lipo-oligosaccharides (LOS) structures are all different virulence features exploited by C. jejuni to adhere, invade, adapt and survive in a mammalian host 2-11. The most interesting one is the LOS structure, which is phase variable 12, 13. C. jejuni LOS phase variation not only provides host adaptation abilities 14, but also protection against human serum 8. Next, LOS is an important virulence factor used by C. jejuni to invade intestinal epithelial cells 15, 16. To date, five major and distinct LOS biosynthesis gene clusters, here referred to as LOS classes, have been described for C
    • …
    corecore