11 research outputs found
Nonlinear Oxidation Behavior in Pure Ni and Ni-Containing Entropic Alloys
We performed a combined experimental and theoretical investigation of the oxidation behavior of pure Ni and of the following multi-component Ni-containing alloys with nearly equiatomic compositions: FeNi, CoFeNi, CoCrFeNi, and CoCrFeMnNi. The materials were exposed to air at ambient pressure and at a temperature of 800°C for 150 min, their weight-gain due to oxidation was continuously monitored and the products of oxidation were subsequently characterized by XRD. The most common oxides formed have spinel or halite structure and the materials resistance to oxidation increases as: FeNi < CoFeNi < Ni < CoCrFeMnNi < CoCrFeNi. We found further that the oxidation-resistance of the materials does not correlate linearly with the number of elements present, instead the type of elements impacts significantly the materials susceptibility to oxidative damage. Cr is the element that imparted higher resistance to oxidation while Mn and Fe worsened the materials performance. In order to better understand the mechanisms of oxidation we employed thermodynamic equilibrium calculations and predicted the phase stability of oxides of the elements that are present in the materials, in different ranges of temperature, composition and oxygen activity. Additionally, we determined the phase compositions for the thermodynamically stable oxides at 800°C. The results from the thermodynamic modeling are in good agreement with the experimental finds. The alloys with low resistance to oxidation such as CoFeNi and FeNi, form the Fe3O4 spinel phase which tends to dominate the phase diagram for these materials. The presence of Cr increases the resistance to atomic rearrangement due to slow diffusion in the complex structure of Cr containing spinel phases. This causes the extremely high resistance to oxidation of the CoCrFeNi alloy. The presence of Mn in CoCrFeNi stabilizes the Mn3O4 spinel, which reduces the oxidation-resistance of the alloys due to the high mobility of Mn
Segregation of P and S Impurities to A Σ9 Grain Boundary in Cu
The segregation of P and S to grain boundaries (GBs) in fcc Cu has implications in diverse physical-chemical properties of the material and this can be of particular high relevance when the material is employed in high performance applications. Here, we studied the segregation of P and S to the symmetric tilt Σ9 (22¯1¯) [110], 38.9° GB of fcc Cu. This GB is characterized by a variety of segregation sites within and near the GB plane, with considerable differences in both atomic site volume and coordination number and geometry. We found that the segregation energies of P and S vary considerably both with distance from the GB plane and sites within the GB plane. The segregation energy is significantly large at the GB plane but drops to almost zero at a distance of only ≈3.5 Å from this. Additionally, for each impurity there are considerable variations in energy (up to 0.6 eV) between segregation sites in the GB plane. These variations have origins both in differences in coordination number and atomic site volume with the effect of coordination number dominating. For sites with the same coordination number, up to a certain atomic site volume, a larger atomic site volume leads to a stronger segregation. After that limit in volume has been reached, a larger volume leads to weaker segregation. The fact that the segregation energy varies with such magnitude within the Σ9 GB plane may have implications in the accumulation of these impurities at these GBs in the material. Because of this, atomic-scale variations of concentration of P and S are expected to occur at the Σ9 GB center and in other GBs with similar features
Unveiling the effect of sacrificial agent amount in the CO2 photoreduction performed in a flow reactor
The use of sacrificial agents in photocatalysis is a powerful resource to enhance the performance of photoactive materials. Despite its importance, the effect of the amount of sacrificial agent is not properly described in the literature. In this paper, we have focused on the role of EtOH in the photoreduction of CO2 to CH4 using Cu-P25 photocatalysts in a flow reactor. We found that the production of CH4 increased with the concentration of EtOH, achieving an outstanding CH4 production yield of 235 µmol/(g·h) for a flow of 0.25 µmol/min of EtOH in the gas stream, hinting at the important role of the sacrificial agent in the reaction. The catalytic results together with the characterization of the materials highlight the need to achieve a minimum surface coverage of EtOH on the surface of the catalyst to control the reaction pathway. The adsorption of EtOH is a key factor in boosting the catalytic activity of the best-performing catalyst and producing CH4 from CO2 photoreduction and C2H4O from the photooxidation of EtOH, obtaining two easily separable interesting products for industrial applications in one reaction
Structure dependent effect of silicon on the oxidation of Al(111) and Al(100)
The effect of sub-monolayer silicon on the oxidation of Al(111) and Al(100) surfaces was investigated using X-ray Photoelectron Spectroscopy (XPS) and density functional theory (DFT) calculations. On both surfaces the adatom site is preferred over substituting Si into the Al-lattice; on Al(100) the four fold hollow site is vastly favored whereas on Al(111) bridge and hollow sites are almost equal in energy. Upon O 2 exposure, Si is not oxidized but buried at the metal/oxide interface under the growing aluminum oxide. On Al(111), Si has a catalytic effect on both the initial oxidation by aiding in creating a higher local oxygen coverage in the early stages of oxidation and, in particular, at higher oxide coverages by facilitating lifting Al from the metal into the oxide. The final oxide, as measured from the Al2p intensity, is 25–30% thicker with Si than without. This observation is valid for both 0.1 monolayer (ML) and 0.3 ML Si coverage. On Al(100), on the other hand, at 0.16 ML Si coverage, the initial oxidation is faster than for the bare surface due to Si island edges being active in the oxide growth. At 0.5 ML Si coverage the oxidation is slower, as the islands coalesce and he amount of edges reduces. Upon oxide formation the effect of Si vanishes as it is overgrown by Al 2 O 3 , and the oxide thickness is only 6% higher than on bare Al(100), for both Si coverages studied. Our findings indicate that, in addition to a vanishing oxygen adsorption energy and Mott potential, a detailed picture of atom exchange and transport at the metal/oxide interface has to be taken into account to explain the limiting oxide thickness