92 research outputs found

    From the organic thin film transistor to the 3-D textile organic cylindrical transistors - perspectives, expectations and predictions

    Get PDF
    In this paper we examine the possibility to simulate and study the behaviour of a fiber-based Textile Transistor in a commercial TCAD system. We also examine the capability of such transistors to operate in sufficiently low voltages, aiming to the potential realization of low-voltage wearable textiles in the future. We have seen that it is potentially feasible to build transistors which can operate in low voltages by using typical materials. Even if some of the selected typical materials have to be replaced by others more suitable for practical use in the textile industry, the simulation is a good starting point for estimating the device typical operation and parameters

    Optimization of cylindrical textile organic field effect transistors using TCAD simulation tool

    Get PDF
    We used a commercial TCAD tool in order to simulate a cylindrical Textile Organic Field Effect Transistor (TOFET) and study the impact of different critical region sizes in its electrical characteristics. The simulation was based on models and parameters similar to those of previous simulations in Organic Thin Film Transistors. We have seen that it is potentially feasible to build transistors which can operate in low voltages by using typical materials. Even if some of the selected typical materials have to be replaced by others more suitable for practical use in the textile industry, the simulation is a good starting point for estimating the device typical operation and parameters. By optimizing critical region sizes of the device we conclude that the device should have an active layer thickness below 100 nm, channel length around 10 mu m and gate oxide thickness as small as possible (300 nm or less), in order to have optimum transistor performance

    Peptide Labeling with Isobaric Tags Yields Higher Identification Rates Using iTRAQ 4-Plex Compared to TMT 6-Plex and iTRAQ 8-Plex on LTQ Orbitrap

    Get PDF
    Peptide labeling with isobaric tags has become a popular technique in quantitative shotgun proteomics. Using two different samples viz. a protein mixture and HeLa extracts, we show that three commercially available isobaric tags differ with regard to peptide identification rates: The number of identified proteins and peptides was largest with iTRAQ 4-plex, followed by TMT 6-plex, and smallest with iTRAQ 8-plex. In all experiments, we employed a previously described method where two scans were acquired for each precursor on an LTQ Orbitrap: A CID scan under standard settings for identification, and a HCD scan for quantification. The observed differences in identification rates were similar when data was searched with either Mascot or Sequest. We consider these findings to be the result of a combination of several factors, most notably prominent ions in CID spectra as a consequence of loss of fragments of the label tag from precursor ions. These fragment ions cannot be explained by current search engines and were observed to have a negative impact on peptide scores
    • …
    corecore