2,785 research outputs found

    Magnetic Reconnection Onset via Disruption of a Forming Current Sheet by the Tearing Instability

    Get PDF
    The recent realization that Sweet-Parker current sheets are violently unstable to the secondary tearing (plasmoid) instability implies that such current sheets cannot occur in real systems. This suggests that, in order to understand the onset of magnetic reconnection, one needs to consider the growth of the tearing instability in a current layer as it is being formed. Such an analysis is performed here in the context of nonlinear resistive MHD for a generic time-dependent equilibrium representing a gradually forming current sheet. It is shown that two onset regimes, single-island and multi-island, are possible, depending on the rate of current sheet formation. A simple model is used to compute the criterion for transition between these two regimes, as well as the reconnection onset time and the current sheet parameters at that moment. For typical solar corona parameters this model yields results consistent with observations.Comment: 5 pages, no figures; accepted for publication in Physical Review Letter

    Plasmoid and Kelvin-Helmholtz instabilities in Sweet-Parker current sheets

    Full text link
    A 2D linear theory of the instability of Sweet-Parker (SP) current sheets is developed in the framework of Reduced MHD. A local analysis is performed taking into account the dependence of a generic equilibrium profile on the outflow coordinate. The plasmoid instability [Loureiro et al, Phys. Plasmas {\bf 14}, 100703 (2007)] is recovered, i.e., current sheets are unstable to the formation of a large-wave-number chain of plasmoids (k_{\rm max}\Lsheet \sim S^{3/8}, where kmaxk_{\rm max} is the wave-number of fastest growing mode, S=\Lsheet V_A/\eta is the Lundquist number, \Lsheet is the length of the sheet, VAV_A is the Alfv\'en speed and η\eta is the plasma resistivity), which grows super-Alfv\'enically fast (\gmax\tau_A\sim S^{1/4}, where \gmax is the maximum growth rate, and \tau_A=\Lsheet/V_A). For typical background profiles, the growth rate and the wave-number are found to {\it increase} in the outflow direction. This is due to the presence of another mode, the Kelvin-Helmholtz (KH) instability, which is triggered at the periphery of the layer, where the outflow velocity exceeds the Alfv\'en speed associated with the upstream magnetic field. The KH instability grows even faster than the plasmoid instability, \gmax \tau_A \sim k_{\rm max} \Lsheet\sim S^{1/2}. The effect of viscosity (ν\nu) on the plasmoid instability is also addressed. In the limit of large magnetic Prandtl numbers, Pm=ν/ηPm=\nu/\eta, it is found that \gmax\sim S^{1/4}Pm^{-5/8} and k_{\rm max} \Lsheet\sim S^{3/8}Pm^{-3/16}, leading to the prediction that the critical Lundquist number for plasmoid instability in the Pm≫1Pm\gg1 regime is \Scrit\sim 10^4Pm^{1/2}. These results are verified via direct numerical simulation of the linearized equations, using a new, analytical 2D SP equilibrium solution.Comment: 21 pages, 9 figures, submitted to Phys. Rev.

    Magnetic reconnection and stochastic plasmoid chains in high-Lundquist-number plasmas

    Full text link
    A numerical study of magnetic reconnection in the large-Lundquist-number (SS), plasmoid-dominated regime is carried out for SS up to 10710^7. The theoretical model of Uzdensky {\it et al.} [Phys. Rev. Lett. {\bf 105}, 235002 (2010)] is confirmed and partially amended. The normalized reconnection rate is \normEeff\sim 0.02 independently of SS for S≫104S\gg10^4. The plasmoid flux (Ψ\Psi) and half-width (wxw_x) distribution functions scale as f(Ψ)∼Ψ−2f(\Psi)\sim \Psi^{-2} and f(wx)∼wx−2f(w_x)\sim w_x^{-2}. The joint distribution of Ψ\Psi and wxw_x shows that plasmoids populate a triangular region wx≳Ψ/B0w_x\gtrsim\Psi/B_0, where B0B_0 is the reconnecting field. It is argued that this feature is due to plasmoid coalescence. Macroscopic "monster" plasmoids with wx∼10w_x\sim 10% of the system size are shown to emerge in just a few Alfv\'en times, independently of SS, suggesting that large disruptive events are an inevitable feature of large-SS reconnection.Comment: 5 pages, 6 figures, submitted for publicatio

    Gender Matters! Analyzing Global Cultural Gender Preferences for Venues Using Social Sensing

    Full text link
    Gender differences is a phenomenon around the world actively researched by social scientists. Traditionally, the data used to support such studies is manually obtained, often through surveys with volunteers. However, due to their inherent high costs because of manual steps, such traditional methods do not quickly scale to large-size studies. We here investigate a particular aspect of gender differences: preferences for venues. To that end we explore the use of check-in data collected from Foursquare to estimate cultural gender preferences for venues in the physical world. For that, we first demonstrate that by analyzing the check-in data in various regions of the world we can find significant differences in preferences for specific venues between gender groups. Some of these significant differences reflect well-known cultural patterns. Moreover, we also gathered evidence that our methodology offers useful information about gender preference for venues in a given region in the real world. This suggests that gender and venue preferences observed may not be independent. Our results suggests that our proposed methodology could be a promising tool to support studies on gender preferences for venues at different spatial granularities around the world, being faster and cheaper than traditional methods, besides quickly capturing changes in the real world

    Effect of current corrugations on the stability of the tearing mode

    Full text link
    The generation of zonal magnetic fields in laboratory fusion plasmas is predicted by theoretical and numerical models and was recently observed experimentally. It is shown that the modification of the current density gradient associated with such corrugations can significantly affect the stability of the tearing mode. A simple scaling law is derived that predicts the impact of small stationary current corrugations on the stability parameter Δ′\Delta'. The described destabilization mechanism can provide an explanation for the trigger of the Neoclassical Tearing Mode (NTM) in plasmas without significant MHD activity.Comment: Accepted to Physics of Plasma
    • …
    corecore