3,910 research outputs found
Theory of Local Dynamical Magnetic Susceptibilities from the Korringa-Kohn-Rostoker Green Function Method
Within the framework of time-dependent density functional theory combined
with the Korringa-Kohn-Rostoker Green function formalism, we present a real
space methodology to investigate dynamical magnetic excitations from
first-principles. We set forth a scheme which enables one to deduce the correct
effective Coulomb potential needed to preserve the spin-invariance signature in
the dynamical susceptibilities, i.e. the Goldstone mode. We use our approach to
explore the spin dynamics of 3d adatoms and different dimers deposited on a
Cu(001) with emphasis on their decay to particle-hole pairs.Comment: 32 pages (preprint), 6 figures, one tabl
Spin Orbit Coupling and Spin Waves in Ultrathin Ferromagnets: The Spin Wave Rashba Effect
We present theoretical studies of the influence of spin orbit coupling on the
spin wave excitations of the Fe monolayer and bilayer on the W(110) surface.
The Dzyaloshinskii-Moriya interaction is active in such films, by virtue of the
absence of reflection symmetry in the plane of the film. When the magnetization
is in plane, this leads to a linear term in the spin wave dispersion relation
for propagation across the magnetization. The dispersion relation thus assumes
a form similar to that of an energy band of an electron trapped on a
semiconductor surfaces with Rashba coupling active. We also show SPEELS
response functions that illustrate the role of spin orbit coupling in such
measurements. In addition to the modifications of the dispersion relations for
spin waves, the presence of spin orbit coupling in the W substrate leads to a
substantial increase in the linewidth of the spin wave modes. The formalism we
have developed applies to a wide range of systems, and the particular system
explored in the numerical calculations provides us with an illustration of
phenomena which will be present in other ultrathin ferromagnet/substrate
combinations
Thermally activated magnetization reversal in monoatomic magnetic chains on surfaces studied by classical atomistic spin-dynamics simulations
We analyze the spontaneous magnetization reversal of supported monoatomic
chains of finite length due to thermal fluctuations via atomistic spin-dynamics
simulations. Our approach is based on the integration of the Landau-Lifshitz
equation of motion of a classical spin Hamiltonian at the presence of
stochastic forces. The associated magnetization lifetime is found to obey an
Arrhenius law with an activation barrier equal to the domain wall energy in the
chain. For chains longer than one domain-wall width, the reversal is initiated
by nucleation of a reversed magnetization domain primarily at the chain edge
followed by a subsequent propagation of the domain wall to the other edge in a
random-walk fashion. This results in a linear dependence of the lifetime on the
chain length, if the magnetization correlation length is not exceeded. We
studied chains of uniaxial and tri-axial anisotropy and found that a tri-axial
anisotropy leads to a reduction of the magnetization lifetime due to a higher
reversal attempt rate, even though the activation barrier is not changed.Comment: 2nd version contains some improvements and new Appendi
Quantum filter for non-local polarization properties of photonic qubits
We present an optical filter that transmits photon pairs only if they share
the same horizontal or vertical polarization, without decreasing the quantum
coherence between these two possibilities. Various applications for
entanglement manipulations and multi-photon qubits are discussed.Comment: 7 pages, including one figure, short discussion of error sources
adde
Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals
We introduce a new, highly sensitive, and simple heterodyne optical method
for imaging individual nonfluorescent nanoclusters and nanocrystals. A 2 order
of magnitude improvement of the signal is achieved compared to previous
methods. This allows for the unprecedented detection of individual small
absorptive objects such as metallic clusters (of 67 atoms) or nonluminescent
semiconductor nanocrystals. The measured signals are in agreement with a
calculation based on the scattering field theory from a photothermal-induced
modulated index of refraction profile around the nanoparticle
Anomalously large g-factor of single atoms adsorbed on a metal substrate
We have performed inelastic scanning tunneling spectroscopy (ISTS) on
individual Fe atoms adsorbed on a Ag(111) surface. ISTS reveals a magnetization
excitation with a lifetime of about 400 fsec which decreases linearly upon
application of a magnetic field. Astoundingly, we find that the g-factor, which
characterizes the shift in energy of the excitation in a magnetic field, is g =
3.1 instead of the regular value of 2. This enhancement can be understood when
considering the complete electronic structure of both the Ag(111) surface state
and the Fe atom, as shown by ab initio calculations of the magnetic
susceptibility.Comment: 11 pages, 3 figure
Experimental demonstration of ground state laser cooling with electromagnetically induced transparency
Ground state laser cooling of a single trapped ion is achieved using a
technique which tailors the absorption profile for the cooling laser by
exploiting electromagnetically induced transparency in the Zeeman structure of
a dipole transition. This new method is robust, easy to implement and proves
particularly useful for cooling several motional degrees of freedom
simultaneously, which is of great practical importance for the implementation
of quantum logic schemes with trapped ions.Comment: 4 pages, 4 figure
Interferometric Tests of Teleportation
We investigate a direct test of teleportation efficacy based on a
Mach-Zehnder interferometer. The analysis is performed for continuous variable
teleportation of both discrete and continuous observables
Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling
High-bit-rate nanocavity-based single photon sources in the 1,550-nm telecom
band are challenges facing the development of fibre-based long-haul quantum
communication networks. Here we report a very fast single photon source in the
1,550-nm telecom band, which is achieved by a large Purcell enhancement that
results from the coupling of a single InAs quantum dot and an InP photonic
crystal nanocavity. At a resonance, the spontaneous emission rate was enhanced
by a factor of 5 resulting a record fast emission lifetime of 0.2 ns at 1,550
nm. We also demonstrate that this emission exhibits an enhanced anti-bunching
dip. This is the first realization of nanocavity-enhanced single photon
emitters in the 1,550-nm telecom band. This coupled quantum dot cavity system
in the telecom band thus provides a bright high-bit-rate non-classical single
photon source that offers appealing novel opportunities for the development of
a long-haul quantum telecommunication system via optical fibres.Comment: 16 pages, 4 figure
Photothermal Absorption Spectroscopy of Individual Semiconductor Nanocrystals
Photothermal heterodyne detection is used to record the first
room-temperature absorption spectra of single CdSe/ZnS semiconductor
nanocrystals. These spectra are recorded in the high cw excitation regime, and
the observed bands are assigned to transitions involving biexciton and trion
states. Comparison with the single nanocrystals photoluminescence spectra leads
to the measurement of spectral Stokes shifts free from ensemble averaging
- …