3,949 research outputs found

    Theory of Local Dynamical Magnetic Susceptibilities from the Korringa-Kohn-Rostoker Green Function Method

    Get PDF
    Within the framework of time-dependent density functional theory combined with the Korringa-Kohn-Rostoker Green function formalism, we present a real space methodology to investigate dynamical magnetic excitations from first-principles. We set forth a scheme which enables one to deduce the correct effective Coulomb potential needed to preserve the spin-invariance signature in the dynamical susceptibilities, i.e. the Goldstone mode. We use our approach to explore the spin dynamics of 3d adatoms and different dimers deposited on a Cu(001) with emphasis on their decay to particle-hole pairs.Comment: 32 pages (preprint), 6 figures, one tabl

    Spin Orbit Coupling and Spin Waves in Ultrathin Ferromagnets: The Spin Wave Rashba Effect

    Full text link
    We present theoretical studies of the influence of spin orbit coupling on the spin wave excitations of the Fe monolayer and bilayer on the W(110) surface. The Dzyaloshinskii-Moriya interaction is active in such films, by virtue of the absence of reflection symmetry in the plane of the film. When the magnetization is in plane, this leads to a linear term in the spin wave dispersion relation for propagation across the magnetization. The dispersion relation thus assumes a form similar to that of an energy band of an electron trapped on a semiconductor surfaces with Rashba coupling active. We also show SPEELS response functions that illustrate the role of spin orbit coupling in such measurements. In addition to the modifications of the dispersion relations for spin waves, the presence of spin orbit coupling in the W substrate leads to a substantial increase in the linewidth of the spin wave modes. The formalism we have developed applies to a wide range of systems, and the particular system explored in the numerical calculations provides us with an illustration of phenomena which will be present in other ultrathin ferromagnet/substrate combinations

    Thermally activated magnetization reversal in monoatomic magnetic chains on surfaces studied by classical atomistic spin-dynamics simulations

    Full text link
    We analyze the spontaneous magnetization reversal of supported monoatomic chains of finite length due to thermal fluctuations via atomistic spin-dynamics simulations. Our approach is based on the integration of the Landau-Lifshitz equation of motion of a classical spin Hamiltonian at the presence of stochastic forces. The associated magnetization lifetime is found to obey an Arrhenius law with an activation barrier equal to the domain wall energy in the chain. For chains longer than one domain-wall width, the reversal is initiated by nucleation of a reversed magnetization domain primarily at the chain edge followed by a subsequent propagation of the domain wall to the other edge in a random-walk fashion. This results in a linear dependence of the lifetime on the chain length, if the magnetization correlation length is not exceeded. We studied chains of uniaxial and tri-axial anisotropy and found that a tri-axial anisotropy leads to a reduction of the magnetization lifetime due to a higher reversal attempt rate, even though the activation barrier is not changed.Comment: 2nd version contains some improvements and new Appendi

    Quantum filter for non-local polarization properties of photonic qubits

    Get PDF
    We present an optical filter that transmits photon pairs only if they share the same horizontal or vertical polarization, without decreasing the quantum coherence between these two possibilities. Various applications for entanglement manipulations and multi-photon qubits are discussed.Comment: 7 pages, including one figure, short discussion of error sources adde

    Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals

    Full text link
    We introduce a new, highly sensitive, and simple heterodyne optical method for imaging individual nonfluorescent nanoclusters and nanocrystals. A 2 order of magnitude improvement of the signal is achieved compared to previous methods. This allows for the unprecedented detection of individual small absorptive objects such as metallic clusters (of 67 atoms) or nonluminescent semiconductor nanocrystals. The measured signals are in agreement with a calculation based on the scattering field theory from a photothermal-induced modulated index of refraction profile around the nanoparticle

    Anomalously large g-factor of single atoms adsorbed on a metal substrate

    Get PDF
    We have performed inelastic scanning tunneling spectroscopy (ISTS) on individual Fe atoms adsorbed on a Ag(111) surface. ISTS reveals a magnetization excitation with a lifetime of about 400 fsec which decreases linearly upon application of a magnetic field. Astoundingly, we find that the g-factor, which characterizes the shift in energy of the excitation in a magnetic field, is g = 3.1 instead of the regular value of 2. This enhancement can be understood when considering the complete electronic structure of both the Ag(111) surface state and the Fe atom, as shown by ab initio calculations of the magnetic susceptibility.Comment: 11 pages, 3 figure

    Experimental demonstration of ground state laser cooling with electromagnetically induced transparency

    Get PDF
    Ground state laser cooling of a single trapped ion is achieved using a technique which tailors the absorption profile for the cooling laser by exploiting electromagnetically induced transparency in the Zeeman structure of a dipole transition. This new method is robust, easy to implement and proves particularly useful for cooling several motional degrees of freedom simultaneously, which is of great practical importance for the implementation of quantum logic schemes with trapped ions.Comment: 4 pages, 4 figure

    Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling

    Get PDF
    High-bit-rate nanocavity-based single photon sources in the 1,550-nm telecom band are challenges facing the development of fibre-based long-haul quantum communication networks. Here we report a very fast single photon source in the 1,550-nm telecom band, which is achieved by a large Purcell enhancement that results from the coupling of a single InAs quantum dot and an InP photonic crystal nanocavity. At a resonance, the spontaneous emission rate was enhanced by a factor of 5 resulting a record fast emission lifetime of 0.2 ns at 1,550 nm. We also demonstrate that this emission exhibits an enhanced anti-bunching dip. This is the first realization of nanocavity-enhanced single photon emitters in the 1,550-nm telecom band. This coupled quantum dot cavity system in the telecom band thus provides a bright high-bit-rate non-classical single photon source that offers appealing novel opportunities for the development of a long-haul quantum telecommunication system via optical fibres.Comment: 16 pages, 4 figure

    Photothermal Absorption Spectroscopy of Individual Semiconductor Nanocrystals

    Full text link
    Photothermal heterodyne detection is used to record the first room-temperature absorption spectra of single CdSe/ZnS semiconductor nanocrystals. These spectra are recorded in the high cw excitation regime, and the observed bands are assigned to transitions involving biexciton and trion states. Comparison with the single nanocrystals photoluminescence spectra leads to the measurement of spectral Stokes shifts free from ensemble averaging
    corecore