330 research outputs found
Berry Phase Quantum Thermometer
We show how Berry phase can be used to construct an ultra-high precision
quantum thermometer. An important advantage of our scheme is that there is no
need for the thermometer to acquire thermal equilibrium with the sample. This
reduces measurement times and avoids precision limitations.Comment: Updated to published version. I. Fuentes previously published as I.
Fuentes-Guridi and I. Fuentes-Schulle
Transition rate of the Unruh-DeWitt detector in curved spacetime
We examine the Unruh-DeWitt particle detector coupled to a scalar field in an
arbitrary Hadamard state in four-dimensional curved spacetime. Using smooth
switching functions to turn on and off the interaction, we obtain a
regulator-free integral formula for the total excitation probability, and we
show that an instantaneous transition rate can be recovered in a suitable
limit. Previous results in Minkowski space are recovered as a special case. As
applications, we consider an inertial detector in the Rindler vacuum and a
detector at rest in a static Newtonian gravitational field. Gravitational
corrections to decay rates in atomic physics laboratory experiments on the
surface of the Earth are estimated to be suppressed by 42 orders of magnitude.Comment: 27 pages, 1 figure. v3: Typos corrected. Published versio
No-Boundary Theta-Sectors in Spatially Flat Quantum Cosmology
Gravitational theta-sectors are investigated in spatially locally homogeneous
cosmological models with flat closed spatial surfaces in 2+1 and 3+1 spacetime
dimensions. The metric ansatz is kept in its most general form compatible with
Hamiltonian minisuperspace dynamics. Nontrivial theta-sectors admitting a
semiclassical no-boundary wave function are shown to exist only in 3+1
dimensions, and there only for two spatial topologies. In both cases the
spatial surface is nonorientable and the nontrivial no-boundary theta-sector
unique. In 2+1 dimensions the nonexistence of nontrivial no-boundary
theta-sectors is shown to be of topological origin and thus to transcend both
the semiclassical approximation and the minisuperspace ansatz. Relation to the
necessary condition given by Hartle and Witt for the existence of no-boundary
theta-states is discussed.Comment: 30 p
The exponential law: Monopole detectors, Bogoliubov transformations, and the thermal nature of the Euclidean vacuum in RP^3 de Sitter spacetime
We consider scalar field theory on the RP^3 de Sitter spacetime (RP3dS),
which is locally isometric to de Sitter space (dS) but has spatial topology
RP^3. We compare the Euclidean vacua on RP3dS and dS in terms of three
quantities that are relevant for an inertial observer: (i) the stress-energy
tensor; (ii) the response of an inertial monopole particle detector; (iii) the
expansion of the Euclidean vacuum in terms of many-particle states associated
with static coordinates centered at an inertial world line. In all these
quantities, the differences between RP3dS and dS turn out to fall off
exponentially at early and late proper times along the inertial trajectory. In
particular, (ii) and (iii) yield at early and late proper times in RP3dS the
usual thermal result in the de Sitter Hawking temperature. This conforms to
what one might call an exponential law: in expanding locally de Sitter
spacetimes, differences due to global topology should fall off exponentially in
the proper time.Comment: 22 pages, REVTex v3.1 with amsfonts and epsf, includes 2 eps figures.
(v2: Minor typos corrected, references updated.
Casimir energy in the gauge/gravity description of Bjorken flow?
In the AdS/CFT description of four-dimensional QCD matter undergoing Bjorken
expansion, does the holographic energy-momentum tensor contain a Casimir-type
contribution that should not be attributed to thermal matter? When the bulk
isometry ansatz that yielded such a Casimir term for (1+1)-dimensional boundary
matter is generalised to a four-dimensional boundary, we show that a Casimir
term does not arise, owing to singularities in the five-dimensional bulk
solution. The geometric reasons are traced to a difference between the
isometries of AdS_3 and AdS_{d+1} for d>=3.Comment: 14 pages. v3: Relationship to the work in [3] clarified. Typos
corrected. Published versio
Midisuperspace-Induced Corrections to the Wheeler De Witt Equation
We consider the midisuperspace of four dimensional spherically symmetric
metrics and the Kantowski-Sachs minisuperspace contained in it. We discuss the
quantization of the midisuperspace using the fact that the dimensionally
reduced Einstein Hilbert action becomes a scalar-tensor theory of gravity in
two dimensions. We show that the covariant regularization procedure in the
midisuperspace induces modifications into the minisuperspace Wheeler DeWitt
equation.Comment: 7 page
Addendum to "Classical and Quantum Evolutions of the de Sitter and the anti-de Sitter Universes in 2+1 dimensions"
The previous discussion \cite{ezawa} on reducing the phase space of the first
order Einstein gravity in 2+1 dimensions is reconsidered. We construct a \lq\lq
correct" physical phase space in the case of positive cosmological constant,
taking into account the geometrical feature of SO(3,1) connections. A
parametrization which unifies the two sectors of the physical phase space is
also given.Comment: Latex 8 pages (Crucial and essential changes have been made.
- …