69 research outputs found

    Effects of decoherence on the radiative and squeezing properties in a coherently driven trapped two-level atom

    Full text link
    Analysis of the effects of decoherence on the radiative and squeezing properties of a coherently driven two-level atom trapped in a resonant cavity applying the corresponding master equation is presented. The atomic dynamics as well as the squeezing and statistical properties of the emitted radiation are investigated. It is found that the atom stays in the lower energy level more often at steady state irrespective of the strength of the coherent radiation and thermal fluctuations entering the cavity. Moreover, a strong external coherent radiation results the splitting of the line of the emission spectrum, whereas the decoherence broadens the width and significantly decreases the height. It is also found that the emitted radiation exhibits photon anti-bunching, super-Poissonian photon statistics and squeezing, despite the presence of the decoherence which is expected to destroy the quantum features.Comment: 9 pages, 9 figure

    Entanglement Swapping: Entangling Atoms That Never Interacted

    Full text link
    In this paper we discuss four different proposals of entangling atomic states of particles which have never interacted. The experimental realization proposed makes use of the interaction of Rydberg atoms with a micromaser cavity prepared in either a coherent state or in a superposition of the zero and one field Fock states. We consider atoms in either a three-level cascade or lambda configurationComment: 17 pages and 2 figure

    Realization of GHZ States and the GHZ Test via Cavity QED

    Full text link
    In this article we discuss the realization of atomic GHZ states involving three-level atoms and we show explicitly how to use this state to perform the GHZ test in which it is possible to decide between local realism theories and quantum mechanics. The experimental realizations proposed makes use of the interaction of Rydberg atoms with a cavity prepared in a coherent state.Comment: 16 pages and 3 figures. submitted to J. Mod. Op

    The Rydberg-Atom-Cavity Axion Search

    Get PDF
    We report on the present progress in development of the dark matter axion search experiment with Rydberg-atom-cavity detectors in Kyoto, CARRACK I and CARRACK II. The axion search has been performed with CARRACK I in the 8 % mass range around 10μeV 10 \mu {\rm eV} , and CARRACK II is now ready for the search in the wide range 2μeV50μeV 2 \mu {\rm eV} - 50 \mu {\rm eV} . We have also developed quantum theoretical calculations on the axion-photon-atom system in the resonant cavity in order to estimate precisely the detection sensitivity for the axion signal. Some essential features on the axion-photon-atom interaction are clarified, which provide the optimum experimental setup for the axion search.Comment: 8 pages, 2 figures, Invited talk presented at the Dark2000, Heidelberg, Germany,10-15 July, 200

    Phase preserving amplification near the quantum limit with a Josephson Ring Modulator

    Full text link
    Recent progress in solid state quantum information processing has stimulated the search for ultra-low-noise amplifiers and frequency converters in the microwave frequency range, which could attain the ultimate limit imposed by quantum mechanics. In this article, we report the first realization of an intrinsically phase-preserving, non-degenerate superconducting parametric amplifier, a so far missing component. It is based on the Josephson ring modulator, which consists of four junctions in a Wheatstone bridge configuration. The device symmetry greatly enhances the purity of the amplification process and simplifies both its operation and analysis. The measured characteristics of the amplifier in terms of gain and bandwidth are in good agreement with analytical predictions. Using a newly developed noise source, we also show that our device operates within a factor of three of the quantum limit. This development opens new applications in the area of quantum analog signal processing

    Inherent polarization entanglement generated from a monolithic semiconductor chip

    Get PDF
    Creating miniature chip scale implementations of optical quantum information protocols is a dream for many in the quantum optics community. This is largely because of the promise of stability and scalability. Here we present a monolithically integratable chip architecture upon which is built a photonic device primitive called a Bragg reflection waveguide (BRW). Implemented in gallium arsenide, we show that, via the process of spontaneous parametric down conversion, the BRW is capable of directly producing polarization entangled photons without additional path difference compensation, spectral filtering or post-selection. After splitting the twin-photons immediately after they emerge from the chip, we perform a variety of correlation tests on the photon pairs and show non-classical behaviour in their polarization. Combined with the BRW's versatile architecture our results signify the BRW design as a serious contender on which to build large scale implementations of optical quantum processing devices

    Justification of the symmetric damping model of the dynamical Casimir effect in a cavity with a semiconductor mirror

    Full text link
    A "microscopic" justification of the "symmetric damping" model of a quantum oscillator with time-dependent frequency and time-dependent damping is given. This model is used to predict results of experiments on simulating the dynamical Casimir effect in a cavity with a photo-excited semiconductor mirror. It is shown that the most general bilinear time-dependent coupling of a selected oscillator (field mode) to a bath of harmonic oscillators results in two equal friction coefficients for the both quadratures, provided all the coupling coefficients are proportional to a single arbitrary function of time whose duration is much shorter than the periods of all oscillators. The choice of coupling in the rotating wave approximation form leads to the "mimimum noise" model of the quantum damped oscillator, introduced earlier in a pure phenomenological way.Comment: 9 pages, typos corrected, corresponds to the published version, except for the reference styl

    Dissipative and Non-dissipative Single-Qubit Channels: Dynamics and Geometry

    Full text link
    Single-qubit channels are studied under two broad classes: amplitude damping channels and generalized depolarizing channels. A canonical derivation of the Kraus representation of the former, via the Choi isomorphism is presented for the general case of a system's interaction with a squeezed thermal bath. This isomorphism is also used to characterize the difference in the geometry and rank of these channel classes. Under the isomorphism, the degree of decoherence is quantified according to the mixedness or separability of the Choi matrix. Whereas the latter channels form a 3-simplex, the former channels do not form a convex set as seen from an ab initio perspective. Further, where the rank of generalized depolarizing channels can be any positive integer upto 4, that of amplitude damping ones is either 2 or 4. Various channel performance parameters are used to bring out the different influences of temperature and squeezing in dissipative channels. In particular, a noise range is identified where the distinguishability of states improves inspite of increasing decoherence due to environmental squeezing.Comment: 12 pages, 4 figure

    Effect of biased noise fluctuations on the output radiation of coherent beat laser

    Get PDF
    Effect of biased noise fluctuations on the degree of squeezing as well as the intensity of a radiation generated by a one-photon coherent beat laser is presented. It turns out that the radiation exhibits squeezing inside and outside the cavity under certain conditions. The degree of squeezing is enhanced by the biased noise input significantly in both regions. Despite the presence of the biased environment modes outside the cavity, the degree of squeezing outside the cavity can be greater than or equal to or even less than the cavity radiation depending on the initial preparation of the atomic superposition and amplitude of the external driving radiation. But the intensity of the radiation is found to be lesser outside the cavity regardless of these parameters.Comment: 18 pages, 7 figure

    Room temperature mid-IR single photon spectral imaging

    Get PDF
    Spectral imaging and detection of mid-infrared (mid-IR) wavelengths are emerging as an enabling technology of great technical and scientific interest; primarily because important chemical compounds display unique and strong mid-IR spectral fingerprints revealing valuable chemical information. While modern Quantum cascade lasers have evolved as ideal coherent mid-IR excitation sources, simple, low noise, room temperature detectors and imaging systems still lag behind. We address this need presenting a novel, field-deployable, upconversion system for sensitive, 2-D, mid-IR spectral imaging. Measured room temperature dark noise is 0.2 photons/spatial element/second, which is a billion times below the dark noise level of cryogenically cooled InSb cameras. Single photon imaging and up to 200 x 100 spatial elements resolution is obtained reaching record high continuous wave quantum efficiency of about 20 % for polarized incoherent light at 3 \mum. The proposed method is relevant for existing and new mid-IR applications like gas analysis and medical diagnostics
    corecore