341 research outputs found

    Nuclear Induction Lineshape: Non-Markovian Diffusion with Boundaries

    Full text link
    The dynamics of viscoelastic fluids are governed by a memory function, essential yet challenging to compute, especially when diffusion faces boundary restrictions. We propose a computational method that captures memory effects by analyzing the time-correlation function of the pressure tensor, a viscosity indicator, through the Stokes-Einstein equation's analytic continuation into the Laplace domain. We integrate this equation with molecular dynamics (MD) simulations to derive necessary parameters. Our approach computes NMR lineshapes using a generalized diffusion coefficient, accounting for temperature and confinement geometry. This method directly links the memory function with thermal transport parameters, facilitating accurate NMR signal computation for non-Markovian fluids in confined geometries.Comment: 11 pages, 9 figure

    Targeted Nanodiamonds for Identification of Subcellular Protein Assemblies in Mammalian Cells

    Full text link
    Transmission electron microscopy (TEM) can be used to successfully determine the structures of proteins. However, such studies are typically done ex situ after extraction of the protein from the cellular environment. Here we describe an application for nanodiamonds as targeted intensity contrast labels in biological TEM, using the nuclear pore complex (NPC) as a model macroassembly. We demonstrate that delivery of antibody-conjugated nanodiamonds to live mammalian cells using maltotriose-conjugated polypropylenimine dendrimers results in efficient localization of nanodiamonds to the intended cellular target. We further identify signatures of nanodiamonds under TEM that allow for unambiguous identification of individual nanodiamonds from a resin-embedded, OsO4-stained environment. This is the first demonstration of nanodiamonds as labels for nanoscale TEM-based identification of subcellular protein assemblies. These results, combined with the unique fluorescence properties and biocompatibility of nanodiamonds, represent an important step toward the use of nanodiamonds as markers for correlated optical/electron bioimaging.Comment: 38 pages, 6 figures, SI section with 3 figure
    • …
    corecore