2,352 research outputs found

    Stein meets Malliavin in normal approximation

    Full text link
    Stein's method is a method of probability approximation which hinges on the solution of a functional equation. For normal approximation the functional equation is a first order differential equation. Malliavin calculus is an infinite-dimensional differential calculus whose operators act on functionals of general Gaussian processes. Nourdin and Peccati (2009) established a fundamental connection between Stein's method for normal approximation and Malliavin calculus through integration by parts. This connection is exploited to obtain error bounds in total variation in central limit theorems for functionals of general Gaussian processes. Of particular interest is the fourth moment theorem which provides error bounds of the order E(Fn4)3\sqrt{\mathbb{E}(F_n^4)-3} in the central limit theorem for elements {Fn}n1\{F_n\}_{n\ge 1} of Wiener chaos of any fixed order such that E(Fn2)=1\mathbb{E}(F_n^2) = 1. This paper is an exposition of the work of Nourdin and Peccati with a brief introduction to Stein's method and Malliavin calculus. It is based on a lecture delivered at the Annual Meeting of the Vietnam Institute for Advanced Study in Mathematics in July 2014.Comment: arXiv admin note: text overlap with arXiv:1404.478

    Poisson process approximation: From Palm theory to Stein's method

    Full text link
    This exposition explains the basic ideas of Stein's method for Poisson random variable approximation and Poisson process approximation from the point of view of the immigration-death process and Palm theory. The latter approach also enables us to define local dependence of point processes [Chen and Xia (2004)] and use it to study Poisson process approximation for locally dependent point processes and for dependent superposition of point processes.Comment: Published at http://dx.doi.org/10.1214/074921706000001076 in the IMS Lecture Notes Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Stein's method, Malliavin calculus, Dirichlet forms and the fourth moment theorem

    Full text link
    The fourth moment theorem provides error bounds of the order E(F4)3\sqrt{{\mathbb E}(F^4) - 3} in the central limit theorem for elements FF of Wiener chaos of any order such that E(F2)=1{\mathbb E}(F^2) = 1. It was proved by Nourdin and Peccati (2009) using Stein's method and the Malliavin calculus. It was also proved by Azmoodeh, Campese and Poly (2014) using Stein's method and Dirichlet forms. This paper is an exposition on the connections between Stein's method and the Malliavin calculus and between Stein's method and Dirichlet forms, and on how these connections are exploited in proving the fourth moment theorem

    Stein's method, Palm theory and Poisson process approximation

    Full text link
    The framework of Stein's method for Poisson process approximation is presented from the point of view of Palm theory, which is used to construct Stein identities and define local dependence. A general result (Theorem \refimportantproposition) in Poisson process approximation is proved by taking the local approach. It is obtained without reference to any particular metric, thereby allowing wider applicability. A Wasserstein pseudometric is introduced for measuring the accuracy of point process approximation. The pseudometric provides a generalization of many metrics used so far, including the total variation distance for random variables and the Wasserstein metric for processes as in Barbour and Brown [Stochastic Process. Appl. 43 (1992) 9-31]. Also, through the pseudometric, approximation for certain point processes on a given carrier space is carried out by lifting it to one on a larger space, extending an idea of Arratia, Goldstein and Gordon [Statist. Sci. 5 (1990) 403-434]. The error bound in the general result is similar in form to that for Poisson approximation. As it yields the Stein factor 1/\lambda as in Poisson approximation, it provides good approximation, particularly in cases where \lambda is large. The general result is applied to a number of problems including Poisson process modeling of rare words in a DNA sequence.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Probability (http://www.imstat.org/aop/) at http://dx.doi.org/10.1214/00911790400000002

    Normal approximation for nonlinear statistics using a concentration inequality approach

    Full text link
    Let TT be a general sampling statistic that can be written as a linear statistic plus an error term. Uniform and non-uniform Berry--Esseen type bounds for TT are obtained. The bounds are the best possible for many known statistics. Applications to U-statistics, multisample U-statistics, L-statistics, random sums and functions of nonlinear statistics are discussed.Comment: Published at http://dx.doi.org/10.3150/07-BEJ5164 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Stein's method via induction

    Full text link
    Applying an inductive technique for Stein and zero bias couplings yields Berry-Esseen theorems for normal approximation for two new examples. The conditions of the main results do not require that the couplings be bounded. Our two applications, one to the Erd\H{o}s-R\'enyi, random graph with a fixed number of edges, and one to Jack measure on tableaux, demonstrate that the method can handle non-bounded variables with non-trivial global dependence, and can produce bounds in the Kolmogorov metric with the optimal rate.Comment: 59 page

    Normal approximation under local dependence

    Full text link
    We establish both uniform and nonuniform error bounds of the Berry-Esseen type in normal approximation under local dependence. These results are of an order close to the best possible if not best possible. They are more general or sharper than many existing ones in the literature. The proofs couple Stein's method with the concentration inequality approach.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Probability (http://www.imstat.org/aop/) at http://dx.doi.org/10.1214/00911790400000045

    Moderate deviations in Poisson approximation: a first attempt

    Full text link
    Poisson approximation using Stein's method has been extensively studied in the literature. The main focus has been on bounding the total variation distance. This paper is a first attempt on moderate deviations in Poisson approximation for right-tail probabilities of sums of dependent indicators. We obtain results under certain general conditions for local dependence as well as for size-bias coupling. These results are then applied to independent indicators, 2-runs, and the matching problem.Comment: 21 page
    corecore