351 research outputs found
Energy radiation of moving cracks
The energy radiated by moving cracks in a discrete background is analyzed.
The energy flow through a given surface is expressed in terms of a generalized
Poynting vector. The velocity of the crack is determined by the radiation by
the crack tip. The radiation becomes more isotropic as the crack velocity
approaches the instability threshold.Comment: 7 pages, embedded figure
Generation de maillages quadrangulaires en utilisant une methode de type frontal
Projet MODULEFToute simulation par la methode des elements finis de problemes physiques modelises en termes d'equations aux derivees partielles necessite dans une premiere phase la construction d'un maillage du domaine de calcul. Cet article propose de presenter une methode permettant la generation automatique d'un maillage compose essentiellement de quadrangles, methode applicable quelle que soit la nature du domaine considere
Universality of Level Spacing Distributions in Classical Chaos
We suggest that random matrix theory applied to a classical action matrix can
be used in classical physics to distinguish chaotic from non-chaotic behavior.
We consider the 2-D stadium billiard system as well as the 2-D anharmonic and
harmonic oscillator. By unfolding of the spectrum of such matrix we compute the
level spacing distribution, the spectral auto-correlation and spectral
rigidity. We observe Poissonian behavior in the integrable case and Wignerian
behavior in the chaotic case. We present numerical evidence that the action
matrix of the stadium billiard displays GOE behavior and give an explanation
for it. The findings present evidence for universality of level fluctuations -
known from quantum chaos - also to hold in classical physics
Continuous image distortion by astrophysical thick lenses
Image distortion due to weak gravitational lensing is examined using a
non-perturbative method of integrating the geodesic deviation and optical
scalar equations along the null geodesics connecting the observer to a distant
source. The method we develop continuously changes the shape of the pencil of
rays from the source to the observer with no reference to lens planes in
astrophysically relevant scenarios. We compare the projected area and the ratio
of semi-major to semi-minor axes of the observed elliptical image shape for
circular sources from the continuous, thick-lens method with the commonly
assumed thin-lens approximation. We find that for truncated singular isothermal
sphere and NFW models of realistic galaxy clusters, the commonly used thin-lens
approximation is accurate to better than 1 part in 10^4 in predicting the image
area and axes ratios. For asymmetric thick lenses consisting of two massive
clusters separated along the line of sight in redshift up to \Delta z = 0.2, we
find that modeling the image distortion as two clusters in a single lens plane
does not produce relative errors in image area or axes ratio more than 0.5%Comment: accepted to GR
Probing Ion-Ion and Electron-Ion Correlations in Liquid Metals within the Quantum Hypernetted Chain Approximation
We use the Quantum Hypernetted Chain Approximation (QHNC) to calculate the
ion-ion and electron-ion correlations for liquid metallic Li, Be, Na, Mg, Al,
K, Ca, and Ga. We discuss trends in electron-ion structure factors and radial
distribution functions, and also calculate the free-atom and metallic-atom
form-factors, focusing on how bonding effects affect the interpretation of
X-ray scattering experiments, especially experimental measurements of the
ion-ion structure factor in the liquid metallic phase.Comment: RevTeX, 19 pages, 7 figure
Generation of defects and disorder from deeply quenching a liquid to form a solid
We show how deeply quenching a liquid to temperatures where it is linearly
unstable and the crystal is the equilibrium phase often produces crystalline
structures with defects and disorder. As the solid phase advances into the
liquid phase, the modulations in the density distribution created behind the
advancing solidification front do not necessarily have a wavelength that is the
same as the equilibrium crystal lattice spacing. This is because in a deep
enough quench the front propagation is governed by linear processes, but the
crystal lattice spacing is determined by nonlinear terms. The wavelength
mismatch can result in significant disorder behind the front that may or may
not persist in the latter stage dynamics. We support these observations by
presenting results from dynamical density functional theory calculations for
simple one- and two-component two-dimensional systems of soft core particles.Comment: 25 pages, 11 figure
Modelling LAI at a regional scale with ISBA-A-gs: comparison with satellite-derived LAI over southwestern France
International audienceA CO2-responsive land surface model (the ISBAA- gs model of M´et´eo-France) is used to simulate photosynthesis and Leaf Area Index (LAI) in southwestern France for a 3-year period (2001–2003). A domain of about 170 000 km2 is covered at a spatial resolution of 8 km. The capability of ISBA-A-gs to reproduce the seasonal and the interannual variability of LAI at a regional scale, is assessed with satellite-derived LAI products. One originates from the CYCLOPES programme using SPOT/VEGETATION data, and two products are based on MODIS data. The comparison reveals discrepancies between the satellite LAI estimates and between satellite and simulated LAI values, both in their intensity and in the timing of the leaf onset. The model simulates higher LAI values for the C3 crops than the satellite observations, which may be due to a saturation effect within the satellite signal or to uncertainties in model parameters. The simulated leaf onset presents a significant delay for C3 crops and mountainous grasslands. In-situ observations at a mid-altitude grassland site show that the generic temperature response of photosynthesis used in the model is not appropriate for plants adapted to the cold climatic conditions of the mountainous areas. This study demonstrates the potential of LAI remote sensing products for identifying and locating models' shortcomings at a regional scale
- …