13,853 research outputs found

    Addressing Cultural Pluralism from an Evangelical Christian Perspective

    Full text link
    The complex issues surrounding cultural pluralism are rapidly turning the public square into a battlefield that divides our country. As Charles Haynes summarized, “At issue for this nation, as for much of the world, is the simple but profound question that runs through modern experience: How will we live with our deepest differences?” (Haynes, 1994). At a time when many citizens of our diverse nation have become disillusioned with the motto e pluribus unum, the Christian higher education community deals with issues involving race, ethnicity, and gender through a variety of responses ranging from isolationism to unqualified inclusion. Evangelical institutions of higher learning are not new to the discussion of multiculturalism. They have rather a rich history of commitment to living out Christ’s commandment to love one’s neighbor as oneself (Mk 12:31) regarding each other through the unity of faith in Christ (Gal 3:28). This paper addresses the historical context for understanding cultural pluralism together with the scriptural and religious imperatives for engaging Christian and secular audiences on this issue. It identifies several of the issues surrounding cultural pluralism faced by evangelicals today, while also developing criteria for celebrating and confronting pluralism. Finally, it articulates strategies for pursuing common ground in the public arena and discusses implications for Christian higher education in addressing cultural pluralism within and beyond the college classroom

    No Μ\nu floors: Effective field theory treatment of the neutrino background in direct dark matter detection experiments

    Get PDF
    Distinguishing a dark matter interaction from an astrophysical neutrino-induced interaction will be major challenge for future direct dark matter searches. In this paper, we consider this issue within non-relativistic Effective Field Theory (EFT), which provides a well-motivated theoretical framework for determining nuclear responses to dark matter scattering events. We analyze the nuclear energy recoil spectra from the different dark matter-nucleon EFT operators, and compare to the nuclear recoil energy spectra that is predicted to be induced by astrophysical neutrino sources. We determine that for 11 of the 14 possible operators, the dark matter-induced recoil spectra can be cleanly distinguished from the corresponding neutrino-induced recoil spectra with moderate size detector technologies that are now being pursued, e.g., these operators would require 0.5 tonne years to be distinguished from the neutrino background for low mass dark matter. Our results imply that in most models detectors with good energy resolution will be able to distinguish a dark matter signal from a neutrino signal, without the need for much larger detectors that must rely on additional information from timing or direction

    Hands-on Gravitational Wave Astronomy: Extracting astrophysical information from simulated signals

    Get PDF
    In this paper we introduce a hands-on activity in which introductory astronomy students act as gravitational wave astronomers by extracting information from simulated gravitational wave signals. The process mimics the way true gravitational wave analysis will be handled by using plots of a pure gravitational wave signal. The students directly measure the properties of the simulated signal, and use these measurements to evaluate standard formulae for astrophysical source parameters. An exercise based on the discussion in this paper has been written and made publicly available online for use in introductory laboratory courses.Comment: 5 pages, 4 figures; submitted to Am. J. Phy

    Science Icebreaker Activities: An Example from Gravitational Wave Astronomy

    Get PDF
    At the beginning of a class or meeting an icebreaker activity is often used to help loosen the group and get everyone talking. Our motivation is to develop activities that serve the purpose of an icebreaker, but are designed to enhance and supplement a science-oriented agenda. The subject of this article is an icebreaker activity related to gravitational wave astronomy. We first describe the unique gravitational wave signals from three distinct sources: monochromatic binaries, merging compact objects, and extreme mass ratio encounters. These signals form the basis of the activity where participants work to match an ideal gravitational wave signal with noisy detector output for each type of source.Comment: Accepted to The Physics Teacher. Original manuscript divided into two papers at the request of the referee. For a related paper on gravitational wave observatories see physics/050920

    Radio emission from satellite-Jupiter interactions (especially Ganymede)

    Full text link
    Analyzing a database of 26 years of observations of Jupiter from the Nan\c{c}ay Decameter Array, we study the occurrence of Io-independent emissions as a function of the orbital phase of the other Galilean satellites and Amalthea. We identify unambiguously the emissions induced by Ganymede and characterize their intervals of occurrence in CML and Ganymede phase and longitude. We also find hints of emissions induced by Europa and, surprisingly, by Amalthea. The signature of Callisto-induced emissions is more tenuous.Comment: 14 pages, 7 figures, in "Planetary Radio Emissions VIII", G. Fischer, G. Mann, M. Panchenko and P. Zarka eds., Austrian Acad. Sci. Press, Vienna, in press, 201

    Effective Actions near Singularities

    Get PDF
    We study the heterotic string compactified on K3 x T^2 near the line T=U, where the effective action becomes singular due to an SU(2) gauge symmetry enhancement. By `integrating in' the light W^\pm vector multiplets we derive a quantum corrected effective action which is manifestly SU(2) invariant and non-singular. This effective action is found to be consistent with a residual SL(2,Z) quantum symmetry on the line T=U. In an appropriate decompactification limit, we recover the known SU(2) invariant action in five dimensions.Comment: 33 pages, LaTeX. v2: cosmetic correction on titlepage. v3: references and note adde
    • 

    corecore